mirror of https://github.com/CGAL/cgal
1457 lines
45 KiB
C++
1457 lines
45 KiB
C++
// Copyright (c) 1999-2004 INRIA Sophia-Antipolis (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
|
// the terms of the Q Public License version 1.0.
|
|
// See the file LICENSE.QPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
//
|
|
// Author(s) : Monique Teillaud <Monique.Teillaud@sophia.inria.fr>
|
|
// Sylvain Pion
|
|
// Christophe Delage <Christophe.Delage@sophia.inria.fr>
|
|
|
|
#ifndef CGAL_REGULAR_TRIANGULATION_3_H
|
|
#define CGAL_REGULAR_TRIANGULATION_3_H
|
|
|
|
#include <CGAL/basic.h>
|
|
|
|
#include <set>
|
|
|
|
#include <CGAL/Triangulation_3.h>
|
|
#include <CGAL/Regular_triangulation_cell_base_3.h>
|
|
|
|
#include <boost/bind.hpp>
|
|
|
|
#if defined(BOOST_MSVC)
|
|
# pragma warning(push)
|
|
# pragma warning(disable:4355) // complaint about using 'this' to
|
|
#endif // initialize a member
|
|
|
|
namespace CGAL {
|
|
|
|
template < class Gt, class Tds_ = Default >
|
|
class Regular_triangulation_3
|
|
: public Triangulation_3<Gt,
|
|
typename Default::Get<Tds_, Triangulation_data_structure_3 <
|
|
Triangulation_vertex_base_3<Gt>,
|
|
Regular_triangulation_cell_base_3<Gt> > >::type>
|
|
{
|
|
typedef Regular_triangulation_3<Gt, Tds_> Self;
|
|
|
|
typedef typename Default::Get<Tds_, Triangulation_data_structure_3 <
|
|
Triangulation_vertex_base_3<Gt>,
|
|
Regular_triangulation_cell_base_3<Gt> > >::type Tds;
|
|
|
|
typedef Triangulation_3<Gt,Tds> Tr_Base;
|
|
|
|
public:
|
|
|
|
typedef Tds Triangulation_data_structure;
|
|
typedef Gt Geom_traits;
|
|
|
|
typedef typename Tr_Base::Vertex_handle Vertex_handle;
|
|
typedef typename Tr_Base::Cell_handle Cell_handle;
|
|
typedef typename Tr_Base::Vertex Vertex;
|
|
typedef typename Tr_Base::Cell Cell;
|
|
typedef typename Tr_Base::Facet Facet;
|
|
typedef typename Tr_Base::Edge Edge;
|
|
|
|
typedef typename Tr_Base::size_type size_type;
|
|
typedef typename Tr_Base::Locate_type Locate_type;
|
|
typedef typename Tr_Base::Cell_iterator Cell_iterator;
|
|
typedef typename Tr_Base::Facet_iterator Facet_iterator;
|
|
typedef typename Tr_Base::Edge_iterator Edge_iterator;
|
|
typedef typename Tr_Base::Facet_circulator Facet_circulator;
|
|
|
|
typedef typename Tr_Base::Finite_vertices_iterator Finite_vertices_iterator;
|
|
typedef typename Tr_Base::Finite_cells_iterator Finite_cells_iterator;
|
|
typedef typename Tr_Base::Finite_facets_iterator Finite_facets_iterator;
|
|
typedef typename Tr_Base::Finite_edges_iterator Finite_edges_iterator;
|
|
typedef typename Tr_Base::All_cells_iterator All_cells_iterator;
|
|
|
|
typedef typename Gt::Weighted_point_3 Weighted_point;
|
|
typedef typename Gt::Bare_point Bare_point;
|
|
typedef typename Gt::Segment_3 Segment;
|
|
typedef typename Gt::Triangle_3 Triangle;
|
|
typedef typename Gt::Tetrahedron_3 Tetrahedron;
|
|
|
|
// types for dual:
|
|
typedef typename Gt::Line_3 Line;
|
|
typedef typename Gt::Ray_3 Ray;
|
|
typedef typename Gt::Plane_3 Plane;
|
|
typedef typename Gt::Object_3 Object;
|
|
|
|
//Tag to distinguish Delaunay from Regular triangulations
|
|
typedef Tag_true Weighted_tag;
|
|
|
|
using Tr_Base::cw;
|
|
using Tr_Base::ccw;
|
|
#ifndef CGAL_CFG_USING_BASE_MEMBER_BUG_2
|
|
using Tr_Base::geom_traits;
|
|
#endif
|
|
using Tr_Base::number_of_vertices;
|
|
using Tr_Base::dimension;
|
|
using Tr_Base::finite_facets_begin;
|
|
using Tr_Base::finite_facets_end;
|
|
using Tr_Base::finite_vertices_begin;
|
|
using Tr_Base::finite_vertices_end;
|
|
using Tr_Base::finite_cells_begin;
|
|
using Tr_Base::finite_cells_end;
|
|
using Tr_Base::finite_edges_begin;
|
|
using Tr_Base::finite_edges_end;
|
|
using Tr_Base::tds;
|
|
using Tr_Base::infinite_vertex;
|
|
using Tr_Base::next_around_edge;
|
|
using Tr_Base::vertex_triple_index;
|
|
using Tr_Base::mirror_vertex;
|
|
using Tr_Base::mirror_index;
|
|
using Tr_Base::orientation;
|
|
using Tr_Base::coplanar_orientation;
|
|
using Tr_Base::adjacent_vertices;
|
|
using Tr_Base::construct_segment;
|
|
using Tr_Base::incident_facets;
|
|
using Tr_Base::insert_in_conflict;
|
|
using Tr_Base::is_infinite;
|
|
using Tr_Base::is_valid_finite;
|
|
using Tr_Base::locate;
|
|
using Tr_Base::side_of_segment;
|
|
using Tr_Base::side_of_edge;
|
|
|
|
Regular_triangulation_3(const Gt & gt = Gt())
|
|
: Tr_Base(gt), hidden_point_visitor(this)
|
|
{}
|
|
|
|
Regular_triangulation_3(const Regular_triangulation_3 & rt)
|
|
: Tr_Base(rt), hidden_point_visitor(this)
|
|
{
|
|
CGAL_triangulation_postcondition( is_valid() );
|
|
}
|
|
|
|
//insertion
|
|
template < typename InputIterator >
|
|
Regular_triangulation_3(InputIterator first, InputIterator last,
|
|
const Gt & gt = Gt())
|
|
: Tr_Base(gt), hidden_point_visitor(this)
|
|
{
|
|
insert(first, last);
|
|
}
|
|
|
|
template < class InputIterator >
|
|
std::ptrdiff_t
|
|
insert(InputIterator first, InputIterator last)
|
|
{
|
|
std::ptrdiff_t n = number_of_vertices();
|
|
|
|
std::vector<Weighted_point> points(first, last);
|
|
spatial_sort (points.begin(), points.end(), geom_traits());
|
|
|
|
Cell_handle hint;
|
|
for (typename std::vector<Weighted_point>::const_iterator p = points.begin(),
|
|
end = points.end(); p != end; ++p)
|
|
{
|
|
Locate_type lt;
|
|
Cell_handle c;
|
|
int li, lj;
|
|
c = locate (*p, lt, li, lj, hint);
|
|
|
|
Vertex_handle v = insert (*p, lt, c, li, lj);
|
|
|
|
hint = v == Vertex_handle() ? c : v->cell();
|
|
}
|
|
std::ptrdiff_t m = number_of_vertices();
|
|
return m - n;
|
|
}
|
|
|
|
Vertex_handle insert(const Weighted_point & p, Vertex_handle hint)
|
|
{
|
|
return insert(p, hint == Vertex_handle() ? this->infinite_cell() : hint->cell());
|
|
}
|
|
|
|
Vertex_handle insert(const Weighted_point & p,
|
|
Cell_handle start = Cell_handle());
|
|
|
|
Vertex_handle insert(const Weighted_point & p, Locate_type lt,
|
|
Cell_handle c, int li, int);
|
|
|
|
template <class OutputIteratorBoundaryFacets,
|
|
class OutputIteratorCells,
|
|
class OutputIteratorInternalFacets>
|
|
Triple<OutputIteratorBoundaryFacets,
|
|
OutputIteratorCells,
|
|
OutputIteratorInternalFacets>
|
|
find_conflicts(const Weighted_point &p, Cell_handle c,
|
|
OutputIteratorBoundaryFacets bfit,
|
|
OutputIteratorCells cit,
|
|
OutputIteratorInternalFacets ifit) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension() >= 2);
|
|
|
|
std::vector<Cell_handle> cells;
|
|
cells.reserve(32);
|
|
std::vector<Facet> facets;
|
|
facets.reserve(64);
|
|
|
|
if (dimension() == 2) {
|
|
Conflict_tester_2 tester(p, this);
|
|
if (! tester (c)) return make_triple (bfit, cit, ifit);
|
|
ifit = Tr_Base::find_conflicts
|
|
(c, tester,
|
|
make_triple(std::back_inserter(facets),
|
|
std::back_inserter(cells),
|
|
ifit)).third;
|
|
}
|
|
else {
|
|
Conflict_tester_3 tester(p, this);
|
|
if (! tester (c)) return make_triple (bfit, cit, ifit);
|
|
ifit = Tr_Base::find_conflicts
|
|
(c, tester,
|
|
make_triple(std::back_inserter(facets),
|
|
std::back_inserter(cells),
|
|
ifit)).third;
|
|
}
|
|
|
|
// Reset the conflict flag on the boundary.
|
|
for(typename std::vector<Facet>::iterator fit=facets.begin();
|
|
fit != facets.end(); ++fit) {
|
|
fit->first->neighbor(fit->second)->tds_data().clear();
|
|
*bfit++ = *fit;
|
|
}
|
|
|
|
// Reset the conflict flag in the conflict cells.
|
|
for(typename std::vector<Cell_handle>::iterator ccit=cells.begin();
|
|
ccit != cells.end(); ++ccit) {
|
|
(*ccit)->tds_data().clear();
|
|
*cit++ = *ccit;
|
|
}
|
|
return make_triple(bfit, cit, ifit);
|
|
}
|
|
|
|
template <class OutputIteratorBoundaryFacets, class OutputIteratorCells>
|
|
std::pair<OutputIteratorBoundaryFacets, OutputIteratorCells>
|
|
find_conflicts(const Weighted_point &p, Cell_handle c,
|
|
OutputIteratorBoundaryFacets bfit,
|
|
OutputIteratorCells cit) const
|
|
{
|
|
Triple<OutputIteratorBoundaryFacets,
|
|
OutputIteratorCells,
|
|
Emptyset_iterator> t = find_conflicts(p, c, bfit, cit,
|
|
Emptyset_iterator());
|
|
return std::make_pair(t.first, t.second);
|
|
}
|
|
|
|
// Returns the vertices on the boundary of the conflict hole.
|
|
template <class OutputIterator>
|
|
OutputIterator
|
|
vertices_in_conflict(const Weighted_point&p, Cell_handle c,
|
|
OutputIterator res) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension() >= 2);
|
|
|
|
// Get the facets on the boundary of the hole.
|
|
std::vector<Facet> facets;
|
|
find_conflicts(p, c, std::back_inserter(facets),
|
|
Emptyset_iterator(), Emptyset_iterator());
|
|
|
|
// Then extract uniquely the vertices.
|
|
std::set<Vertex_handle> vertices;
|
|
if (dimension() == 3) {
|
|
for (typename std::vector<Facet>::const_iterator i = facets.begin();
|
|
i != facets.end(); ++i) {
|
|
vertices.insert(i->first->vertex((i->second+1)&3));
|
|
vertices.insert(i->first->vertex((i->second+2)&3));
|
|
vertices.insert(i->first->vertex((i->second+3)&3));
|
|
}
|
|
} else {
|
|
for (typename std::vector<Facet>::const_iterator i = facets.begin();
|
|
i != facets.end(); ++i) {
|
|
vertices.insert(i->first->vertex(cw(i->second)));
|
|
vertices.insert(i->first->vertex(ccw(i->second)));
|
|
}
|
|
}
|
|
|
|
return std::copy(vertices.begin(), vertices.end(), res);
|
|
}
|
|
|
|
void remove (Vertex_handle v);
|
|
|
|
template < typename InputIterator >
|
|
size_type remove(InputIterator first, InputIterator beyond)
|
|
{
|
|
size_type n = number_of_vertices();
|
|
while (first != beyond) {
|
|
remove (*first);
|
|
++first;
|
|
}
|
|
return n - number_of_vertices();
|
|
}
|
|
|
|
// DISPLACEMENT
|
|
Vertex_handle move_point(Vertex_handle v, const Weighted_point & p);
|
|
|
|
// Displacement works only for Regular triangulation
|
|
// without hidden points at any time
|
|
Vertex_handle move_if_no_collision(Vertex_handle v, const Weighted_point & p);
|
|
Vertex_handle move(Vertex_handle v, const Weighted_point & p);
|
|
|
|
protected:
|
|
|
|
Oriented_side
|
|
side_of_oriented_power_sphere(const Weighted_point &p0,
|
|
const Weighted_point &p1,
|
|
const Weighted_point &p2,
|
|
const Weighted_point &p3,
|
|
const Weighted_point &p,
|
|
bool perturb = false) const;
|
|
|
|
Oriented_side
|
|
side_of_oriented_power_circle(const Weighted_point &p0,
|
|
const Weighted_point &p1,
|
|
const Weighted_point &p2,
|
|
const Weighted_point &p,
|
|
bool perturb = false) const;
|
|
|
|
Bounded_side
|
|
side_of_bounded_power_circle(const Weighted_point &p0,
|
|
const Weighted_point &p1,
|
|
const Weighted_point &p2,
|
|
const Weighted_point &p,
|
|
bool perturb = false) const;
|
|
|
|
Bounded_side
|
|
side_of_bounded_power_segment(const Weighted_point &p0,
|
|
const Weighted_point &p1,
|
|
const Weighted_point &p,
|
|
bool perturb = false) const;
|
|
|
|
|
|
public:
|
|
|
|
// Queries
|
|
Bounded_side
|
|
side_of_power_sphere(Cell_handle c, const Weighted_point &p,
|
|
bool perturb = false) const;
|
|
|
|
Bounded_side
|
|
side_of_power_circle(const Facet & f, const Weighted_point & p,
|
|
bool /* perturb */ = false) const
|
|
{
|
|
return side_of_power_circle(f.first, f.second, p);
|
|
}
|
|
|
|
Bounded_side
|
|
side_of_power_circle(Cell_handle c, int i, const Weighted_point &p,
|
|
bool perturb = false) const;
|
|
|
|
Bounded_side
|
|
side_of_power_segment(Cell_handle c, const Weighted_point &p,
|
|
bool perturb = false) const;
|
|
|
|
Vertex_handle
|
|
nearest_power_vertex_in_cell(const Bare_point& p,
|
|
Cell_handle c) const;
|
|
|
|
Vertex_handle
|
|
nearest_power_vertex(const Bare_point& p, Cell_handle c =
|
|
Cell_handle()) const;
|
|
|
|
bool is_Gabriel(Cell_handle c, int i) const;
|
|
bool is_Gabriel(Cell_handle c, int i, int j) const;
|
|
bool is_Gabriel(const Facet& f)const ;
|
|
bool is_Gabriel(const Edge& e) const;
|
|
bool is_Gabriel(Vertex_handle v) const;
|
|
|
|
|
|
// Dual functions
|
|
Bare_point dual(Cell_handle c) const;
|
|
|
|
Object dual(const Facet & f) const
|
|
{ return dual( f.first, f.second ); }
|
|
|
|
Object dual(Cell_handle c, int i) const;
|
|
|
|
template < class Stream>
|
|
Stream& draw_dual(Stream & os)
|
|
{
|
|
for (Finite_facets_iterator fit = finite_facets_begin(),
|
|
end = finite_facets_end();
|
|
fit != end; ++fit) {
|
|
Object o = dual(*fit);
|
|
if (const Segment *s = object_cast<Segment>(&o)) os << *s;
|
|
else if (const Ray *r = object_cast<Ray>(&o)) os << *r;
|
|
else if (const Bare_point *p = object_cast<Bare_point>(&o)) os << *p;
|
|
}
|
|
return os;
|
|
}
|
|
|
|
bool is_valid(bool verbose = false, int level = 0) const;
|
|
|
|
private:
|
|
bool
|
|
less_power_distance(const Bare_point &p,
|
|
const Weighted_point &q,
|
|
const Weighted_point &r) const
|
|
{
|
|
return
|
|
geom_traits().compare_power_distance_3_object()(p, q, r) == SMALLER;
|
|
}
|
|
|
|
Bare_point
|
|
construct_weighted_circumcenter(const Weighted_point &p,
|
|
const Weighted_point &q,
|
|
const Weighted_point &r,
|
|
const Weighted_point &s) const
|
|
{
|
|
return geom_traits().construct_weighted_circumcenter_3_object()(p,q,r,s);
|
|
}
|
|
|
|
Bare_point
|
|
construct_weighted_circumcenter(const Weighted_point &p,
|
|
const Weighted_point &q,
|
|
const Weighted_point &r) const
|
|
{
|
|
return geom_traits().construct_weighted_circumcenter_3_object()(p,q,r);
|
|
}
|
|
|
|
Line
|
|
construct_perpendicular_line(const Plane &pl, const Bare_point &p) const
|
|
{
|
|
return geom_traits().construct_perpendicular_line_3_object()(pl, p);
|
|
}
|
|
|
|
Plane
|
|
construct_plane(const Bare_point &p, const Bare_point &q, const Bare_point &r) const
|
|
{
|
|
return geom_traits().construct_plane_3_object()(p, q, r);
|
|
}
|
|
|
|
Ray
|
|
construct_ray(const Bare_point &p, const Line &l) const
|
|
{
|
|
return geom_traits().construct_ray_3_object()(p, l);
|
|
}
|
|
|
|
Object
|
|
construct_object(const Bare_point &p) const
|
|
{
|
|
return geom_traits().construct_object_3_object()(p);
|
|
}
|
|
|
|
Object
|
|
construct_object(const Segment &s) const
|
|
{
|
|
return geom_traits().construct_object_3_object()(s);
|
|
}
|
|
|
|
Object
|
|
construct_object(const Ray &r) const
|
|
{
|
|
return geom_traits().construct_object_3_object()(r);
|
|
}
|
|
|
|
Vertex_handle
|
|
nearest_power_vertex(const Bare_point &p,
|
|
Vertex_handle v,
|
|
Vertex_handle w) const
|
|
{
|
|
// In case of equality, v is returned.
|
|
CGAL_triangulation_precondition(v != w);
|
|
if (is_infinite(v)) return w;
|
|
if (is_infinite(w)) return v;
|
|
return less_power_distance(p, w->point(), v->point()) ? w : v;
|
|
}
|
|
|
|
Oriented_side
|
|
power_test(const Weighted_point &p, const Weighted_point &q) const
|
|
{
|
|
CGAL_triangulation_precondition(this->equal(p, q));
|
|
return geom_traits().power_test_3_object()(p, q);
|
|
}
|
|
|
|
Oriented_side
|
|
power_test(const Weighted_point &p, const Weighted_point &q,
|
|
const Weighted_point &r) const
|
|
{
|
|
CGAL_triangulation_precondition(this->collinear(p, q, r));
|
|
return geom_traits().power_test_3_object()(p, q, r);
|
|
}
|
|
|
|
Oriented_side
|
|
power_test(const Weighted_point &p, const Weighted_point &q,
|
|
const Weighted_point &r, const Weighted_point &s) const
|
|
{
|
|
CGAL_triangulation_precondition(this->coplanar(p, q, r, s));
|
|
return geom_traits().power_test_3_object()(p, q, r, s);
|
|
}
|
|
|
|
Oriented_side
|
|
power_test(const Weighted_point &p, const Weighted_point &q,
|
|
const Weighted_point &r, const Weighted_point &s,
|
|
const Weighted_point &t) const
|
|
{
|
|
return geom_traits().power_test_3_object()(p, q, r, s, t);
|
|
}
|
|
|
|
bool in_conflict_3(const Weighted_point &p, const Cell_handle c) const
|
|
{
|
|
return side_of_power_sphere(c, p, true) == ON_BOUNDED_SIDE;
|
|
}
|
|
|
|
bool in_conflict_2(const Weighted_point &p, const Cell_handle c, int i) const
|
|
{
|
|
return side_of_power_circle(c, i, p, true) == ON_BOUNDED_SIDE;
|
|
}
|
|
|
|
bool in_conflict_1(const Weighted_point &p, const Cell_handle c) const
|
|
{
|
|
return side_of_power_segment(c, p, true) == ON_BOUNDED_SIDE;
|
|
}
|
|
|
|
bool in_conflict_0(const Weighted_point &p, const Cell_handle c) const
|
|
{
|
|
return power_test(c->vertex(0)->point(), p) == ON_POSITIVE_SIDE;
|
|
}
|
|
|
|
bool in_conflict(const Weighted_point &p, const Cell_handle c) const
|
|
{
|
|
switch (dimension()) {
|
|
case 0: return in_conflict_0(p, c);
|
|
case 1: return in_conflict_1(p, c);
|
|
case 2: return in_conflict_2(p, c, 3);
|
|
case 3: return in_conflict_3(p, c);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
class Conflict_tester_3
|
|
{
|
|
const Weighted_point &p;
|
|
const Self *t;
|
|
|
|
public:
|
|
|
|
Conflict_tester_3(const Weighted_point &pt, const Self *tr)
|
|
: p(pt), t(tr) {}
|
|
|
|
bool operator()(const Cell_handle c) const {
|
|
return t->in_conflict_3(p, c);
|
|
}
|
|
|
|
bool test_initial_cell(const Cell_handle c) const {
|
|
return operator()(c);
|
|
}
|
|
Oriented_side compare_weight(const Weighted_point &wp1,
|
|
const Weighted_point &wp2) const
|
|
{
|
|
return t->power_test (wp1, wp2);
|
|
}
|
|
};
|
|
|
|
class Conflict_tester_2
|
|
{
|
|
const Weighted_point &p;
|
|
const Self *t;
|
|
public:
|
|
|
|
Conflict_tester_2(const Weighted_point &pt, const Self *tr)
|
|
: p(pt), t(tr) {}
|
|
|
|
bool operator()(const Cell_handle c) const
|
|
{
|
|
return t->in_conflict_2(p, c, 3);
|
|
}
|
|
bool test_initial_cell(const Cell_handle c) const {
|
|
return operator()(c);
|
|
}
|
|
Oriented_side compare_weight(const Weighted_point &wp1,
|
|
const Weighted_point &wp2) const
|
|
{
|
|
return t->power_test (wp1, wp2);
|
|
}
|
|
};
|
|
|
|
class Conflict_tester_1
|
|
{
|
|
const Weighted_point &p;
|
|
const Self *t;
|
|
|
|
public:
|
|
|
|
Conflict_tester_1(const Weighted_point &pt, const Self *tr)
|
|
: p(pt), t(tr) {}
|
|
|
|
bool operator()(const Cell_handle c) const
|
|
{
|
|
return t->in_conflict_1(p, c);
|
|
}
|
|
bool test_initial_cell(const Cell_handle c) const {
|
|
return operator()(c);
|
|
}
|
|
Oriented_side compare_weight(const Weighted_point &wp1,
|
|
const Weighted_point &wp2) const
|
|
{
|
|
return t->power_test (wp1, wp2);
|
|
}
|
|
};
|
|
|
|
class Conflict_tester_0
|
|
{
|
|
const Weighted_point &p;
|
|
const Self *t;
|
|
|
|
public:
|
|
|
|
Conflict_tester_0(const Weighted_point &pt, const Self *tr)
|
|
: p(pt), t(tr) {}
|
|
|
|
bool operator()(const Cell_handle c) const
|
|
{
|
|
return t->in_conflict_0(p, c);
|
|
}
|
|
bool test_initial_cell(const Cell_handle c) const {
|
|
return operator()(c);
|
|
}
|
|
int compare_weight(const Weighted_point &wp1,
|
|
const Weighted_point &wp2) const
|
|
{
|
|
return t->power_test (wp1, wp2);
|
|
}
|
|
};
|
|
|
|
class Hidden_point_visitor
|
|
{
|
|
Self *t;
|
|
mutable std::vector<Vertex_handle> vertices;
|
|
mutable std::vector<Weighted_point> hidden_points;
|
|
|
|
public:
|
|
|
|
Hidden_point_visitor(Self *tr) : t(tr) {}
|
|
|
|
template <class InputIterator>
|
|
void process_cells_in_conflict(InputIterator start, InputIterator end) const
|
|
{
|
|
int dim = t->dimension();
|
|
while (start != end) {
|
|
std::copy((*start)->hidden_points_begin(),
|
|
(*start)->hidden_points_end(),
|
|
std::back_inserter(hidden_points));
|
|
|
|
for (int i=0; i<=dim; i++) {
|
|
Vertex_handle v = (*start)->vertex(i);
|
|
if (v->cell() != Cell_handle()) {
|
|
vertices.push_back(v);
|
|
v->set_cell(Cell_handle());
|
|
}
|
|
}
|
|
start ++;
|
|
}
|
|
}
|
|
void reinsert_vertices(Vertex_handle v) {
|
|
Cell_handle hc = v->cell();
|
|
for (typename std::vector<Vertex_handle>::iterator
|
|
vi = vertices.begin(); vi != vertices.end(); ++vi) {
|
|
if ((*vi)->cell() != Cell_handle()) continue;
|
|
hc = t->locate ((*vi)->point(), hc);
|
|
hide_point(hc, (*vi)->point());
|
|
t->tds().delete_vertex(*vi);
|
|
}
|
|
vertices.clear();
|
|
for (typename std::vector<Weighted_point>::iterator
|
|
hp = hidden_points.begin(); hp != hidden_points.end(); ++hp) {
|
|
hc = t->locate (*hp, hc);
|
|
hide_point (hc, *hp);
|
|
}
|
|
hidden_points.clear();
|
|
}
|
|
Vertex_handle replace_vertex(Cell_handle c, int index,
|
|
const Weighted_point &p) {
|
|
Vertex_handle v = c->vertex(index);
|
|
hide_point(c, v->point());
|
|
v->set_point(p);
|
|
return v;
|
|
}
|
|
void hide_point(Cell_handle c, const Weighted_point &p) {
|
|
c->hide_point(p);
|
|
}
|
|
};
|
|
|
|
template < class RegularTriangulation_3 >
|
|
class Vertex_remover;
|
|
|
|
template < class RegularTriangulation_3 >
|
|
class Vertex_inserter;
|
|
|
|
Hidden_point_visitor hidden_point_visitor;
|
|
};
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
nearest_power_vertex_in_cell(const Bare_point& p,
|
|
Cell_handle c) const
|
|
// Returns the finite vertex of the cell c with smaller
|
|
// power distance to p.
|
|
{
|
|
CGAL_triangulation_precondition(dimension() >= 1);
|
|
Vertex_handle nearest = nearest_power_vertex(p,
|
|
c->vertex(0),
|
|
c->vertex(1));
|
|
if (dimension() >= 2) {
|
|
nearest = nearest_power_vertex(p, nearest, c->vertex(2));
|
|
if (dimension() == 3)
|
|
nearest = nearest_power_vertex(p, nearest, c->vertex(3));
|
|
}
|
|
return nearest;
|
|
}
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
nearest_power_vertex(const Bare_point& p, Cell_handle start) const
|
|
{
|
|
if (number_of_vertices() == 0)
|
|
return Vertex_handle();
|
|
|
|
// Use a brute-force algorithm if dimension < 3.
|
|
if (dimension() < 3) {
|
|
Finite_vertices_iterator vit = finite_vertices_begin();
|
|
Vertex_handle res = vit;
|
|
++vit;
|
|
for (Finite_vertices_iterator end = finite_vertices_end(); vit != end; ++vit)
|
|
res = nearest_power_vertex(p, res, vit);
|
|
return res;
|
|
}
|
|
|
|
Locate_type lt;
|
|
int li, lj;
|
|
// I put the cast here temporarily
|
|
// until we solve the traits class pb of regular triangulation
|
|
Cell_handle c = locate(static_cast<Weighted_point>(p), lt, li, lj, start);
|
|
|
|
// - start with the closest vertex from the located cell.
|
|
// - repeatedly take the nearest of its incident vertices if any
|
|
// - if not, we're done.
|
|
Vertex_handle nearest = nearest_power_vertex_in_cell(p, c);
|
|
std::vector<Vertex_handle> vs;
|
|
vs.reserve(32);
|
|
while (true) {
|
|
Vertex_handle tmp = nearest;
|
|
adjacent_vertices(nearest, std::back_inserter(vs));
|
|
for (typename std::vector<Vertex_handle>::const_iterator
|
|
vsit = vs.begin(); vsit != vs.end(); ++vsit)
|
|
tmp = nearest_power_vertex(p, tmp, *vsit);
|
|
if (tmp == nearest)
|
|
break;
|
|
vs.clear();
|
|
nearest = tmp;
|
|
}
|
|
return nearest;
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
typename Regular_triangulation_3<Gt,Tds>::Bare_point
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
dual(Cell_handle c) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension()==3);
|
|
CGAL_triangulation_precondition( ! is_infinite(c) );
|
|
return construct_weighted_circumcenter( c->vertex(0)->point(),
|
|
c->vertex(1)->point(),
|
|
c->vertex(2)->point(),
|
|
c->vertex(3)->point() );
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
typename Regular_triangulation_3<Gt,Tds>::Object
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
dual(Cell_handle c, int i) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension()>=2);
|
|
CGAL_triangulation_precondition( ! is_infinite(c,i) );
|
|
|
|
if ( dimension() == 2 ) {
|
|
CGAL_triangulation_precondition( i == 3 );
|
|
return construct_object(
|
|
construct_weighted_circumcenter(c->vertex(0)->point(),
|
|
c->vertex(1)->point(),
|
|
c->vertex(2)->point()) );
|
|
}
|
|
|
|
// dimension() == 3
|
|
Cell_handle n = c->neighbor(i);
|
|
if ( ! is_infinite(c) && ! is_infinite(n) )
|
|
return construct_object(construct_segment( dual(c), dual(n) ));
|
|
|
|
// either n or c is infinite
|
|
int in;
|
|
if ( is_infinite(c) )
|
|
in = n->index(c);
|
|
else {
|
|
n = c;
|
|
in = i;
|
|
}
|
|
// n now denotes a finite cell, either c or c->neighbor(i)
|
|
unsigned char ind[3] = {(in+1)&3,(in+2)&3,(in+3)&3};
|
|
if ( (in&1) == 1 )
|
|
std::swap(ind[0], ind[1]);
|
|
const Weighted_point& p = n->vertex(ind[0])->point();
|
|
const Weighted_point& q = n->vertex(ind[1])->point();
|
|
const Weighted_point& r = n->vertex(ind[2])->point();
|
|
|
|
Line l =
|
|
construct_perpendicular_line( construct_plane(p,q,r),
|
|
construct_weighted_circumcenter(p,q,r) );
|
|
return construct_object(construct_ray( dual(n), l));
|
|
}
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
Oriented_side
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
side_of_oriented_power_sphere(const Weighted_point &p0,
|
|
const Weighted_point &p1,
|
|
const Weighted_point &p2,
|
|
const Weighted_point &p3,
|
|
const Weighted_point &p, bool perturb) const
|
|
{
|
|
CGAL_triangulation_precondition( orientation(p0, p1, p2, p3) == POSITIVE );
|
|
|
|
using namespace boost;
|
|
|
|
Oriented_side os = power_test(p0, p1, p2, p3, p);
|
|
|
|
if (os != ON_ORIENTED_BOUNDARY || !perturb)
|
|
return os;
|
|
|
|
// We are now in a degenerate case => we do a symbolic perturbation.
|
|
|
|
// We sort the points lexicographically.
|
|
const Weighted_point * points[5] = {&p0, &p1, &p2, &p3, &p};
|
|
std::sort(points, points + 5,
|
|
boost::bind(geom_traits().compare_xyz_3_object(),
|
|
boost::bind(Dereference<Weighted_point>(), _1),
|
|
boost::bind(Dereference<Weighted_point>(), _2)) == SMALLER);
|
|
|
|
// We successively look whether the leading monomial, then 2nd monomial
|
|
// of the determinant has non null coefficient.
|
|
for (int i=4; i>1; --i) {
|
|
if (points[i] == &p)
|
|
return ON_NEGATIVE_SIDE; // since p0 p1 p2 p3 are non coplanar
|
|
// and positively oriented
|
|
Orientation o;
|
|
if (points[i] == &p3 && (o = orientation(p0,p1,p2,p)) != COPLANAR )
|
|
return o;
|
|
if (points[i] == &p2 && (o = orientation(p0,p1,p,p3)) != COPLANAR )
|
|
return o;
|
|
if (points[i] == &p1 && (o = orientation(p0,p,p2,p3)) != COPLANAR )
|
|
return o;
|
|
if (points[i] == &p0 && (o = orientation(p,p1,p2,p3)) != COPLANAR )
|
|
return o;
|
|
}
|
|
|
|
CGAL_triangulation_assertion(false);
|
|
return ON_NEGATIVE_SIDE;
|
|
}
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
Bounded_side
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
side_of_power_sphere(Cell_handle c, const Weighted_point &p,
|
|
bool perturb) const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
int i3;
|
|
if ( ! c->has_vertex( infinite_vertex(), i3 ) ) {
|
|
return Bounded_side( side_of_oriented_power_sphere(c->vertex(0)->point(),
|
|
c->vertex(1)->point(),
|
|
c->vertex(2)->point(),
|
|
c->vertex(3)->point(),
|
|
p, perturb) );
|
|
}
|
|
// else infinite cell :
|
|
int i0,i1,i2;
|
|
if ( (i3%2) == 1 ) {
|
|
i0 = (i3+1)&3;
|
|
i1 = (i3+2)&3;
|
|
i2 = (i3+3)&3;
|
|
}
|
|
else {
|
|
i0 = (i3+2)&3;
|
|
i1 = (i3+1)&3;
|
|
i2 = (i3+3)&3;
|
|
}
|
|
|
|
// general case
|
|
Orientation o = orientation(c->vertex(i0)->point(),
|
|
c->vertex(i1)->point(),
|
|
c->vertex(i2)->point(), p);
|
|
if (o != ZERO)
|
|
return Bounded_side(o);
|
|
|
|
// else p coplanar with i0,i1,i2
|
|
return side_of_bounded_power_circle(c->vertex(i0)->point(),
|
|
c->vertex(i1)->point(),
|
|
c->vertex(i2)->point(),
|
|
p, perturb);
|
|
}
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
Bounded_side
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
side_of_bounded_power_circle(const Weighted_point &p0,
|
|
const Weighted_point &p1,
|
|
const Weighted_point &p2,
|
|
const Weighted_point &p, bool perturb) const
|
|
{
|
|
CGAL_triangulation_precondition(coplanar_orientation(p0, p1, p2) != 0);
|
|
if (coplanar_orientation(p0, p1, p2) == POSITIVE)
|
|
return Bounded_side (side_of_oriented_power_circle(p0, p1, p2, p, perturb));
|
|
// Wrong because the low level power test already does a coplanar orientation
|
|
// test.
|
|
// return Bounded_side (- side_of_oriented_power_circle (p0, p2, p1, p,
|
|
// perturb));
|
|
return Bounded_side (side_of_oriented_power_circle(p0, p2, p1, p, perturb));
|
|
}
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
Oriented_side
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
side_of_oriented_power_circle(const Weighted_point &p0,
|
|
const Weighted_point &p1,
|
|
const Weighted_point &p2,
|
|
const Weighted_point &p, bool perturb) const
|
|
{
|
|
CGAL_triangulation_precondition( coplanar_orientation(p0, p1, p2) == POSITIVE );
|
|
|
|
using namespace boost;
|
|
|
|
Oriented_side os = power_test(p0, p1, p2, p);
|
|
|
|
if (os != ON_ORIENTED_BOUNDARY || !perturb)
|
|
return os;
|
|
|
|
// We are now in a degenerate case => we do a symbolic perturbation.
|
|
|
|
// We sort the points lexicographically.
|
|
const Weighted_point * points[4] = {&p0, &p1, &p2, &p};
|
|
std::sort(points, points + 4,
|
|
boost::bind(geom_traits().compare_xyz_3_object(),
|
|
boost::bind(Dereference<Weighted_point>(), _1),
|
|
boost::bind(Dereference<Weighted_point>(), _2)) == SMALLER);
|
|
|
|
// We successively look whether the leading monomial, then 2nd monomial
|
|
// of the determinant has non null coefficient.
|
|
// 2 iterations are enough (cf paper)
|
|
for (int i=3; i>1; --i) {
|
|
if (points[i] == &p)
|
|
return ON_NEGATIVE_SIDE; // since p0 p1 p2 are non collinear
|
|
// and positively oriented
|
|
Orientation o;
|
|
if (points[i] == &p2 && (o = coplanar_orientation(p0,p1,p)) != COPLANAR )
|
|
return o;
|
|
if (points[i] == &p1 && (o = coplanar_orientation(p0,p,p2)) != COPLANAR )
|
|
return o;
|
|
if (points[i] == &p0 && (o = coplanar_orientation(p,p1,p2)) != COPLANAR )
|
|
return o;
|
|
}
|
|
|
|
CGAL_triangulation_assertion(false);
|
|
return ON_NEGATIVE_SIDE;
|
|
}
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
Bounded_side
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
side_of_power_circle(Cell_handle c, int i, const Weighted_point &p,
|
|
bool perturb) const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() >= 2 );
|
|
int i3 = 5;
|
|
if ( dimension() == 2 ) {
|
|
CGAL_triangulation_precondition( i == 3 );
|
|
// the triangulation is supposed to be valid, ie the facet
|
|
// with vertices 0 1 2 in this order is positively oriented
|
|
if ( ! c->has_vertex( infinite_vertex(), i3 ) )
|
|
return Bounded_side( side_of_oriented_power_circle(c->vertex(0)->point(),
|
|
c->vertex(1)->point(),
|
|
c->vertex(2)->point(),
|
|
p, perturb) );
|
|
// else infinite facet
|
|
// v1, v2 finite vertices of the facet such that v1,v2,infinite
|
|
// is positively oriented
|
|
Vertex_handle v1 = c->vertex( ccw(i3) ),
|
|
v2 = c->vertex( cw(i3) );
|
|
CGAL_triangulation_assertion(coplanar_orientation(v1->point(), v2->point(),
|
|
mirror_vertex(c, i3)->point()) == NEGATIVE);
|
|
Orientation o = coplanar_orientation(v1->point(), v2->point(), p);
|
|
if ( o != ZERO )
|
|
return Bounded_side( o );
|
|
// case when p collinear with v1v2
|
|
return side_of_bounded_power_segment(v1->point(),
|
|
v2->point(),
|
|
p, perturb);
|
|
}// dim 2
|
|
|
|
// else dimension == 3
|
|
CGAL_triangulation_precondition( (i >= 0) && (i < 4) );
|
|
if ( ( ! c->has_vertex(infinite_vertex(),i3) ) || ( i3 != i ) ) {
|
|
// finite facet
|
|
// initialization of i0 i1 i2, vertices of the facet positively
|
|
// oriented (if the triangulation is valid)
|
|
int i0 = (i>0) ? 0 : 1;
|
|
int i1 = (i>1) ? 1 : 2;
|
|
int i2 = (i>2) ? 2 : 3;
|
|
CGAL_triangulation_precondition(this->coplanar(c->vertex(i0)->point(),
|
|
c->vertex(i1)->point(),
|
|
c->vertex(i2)->point(), p));
|
|
return side_of_bounded_power_circle(c->vertex(i0)->point(),
|
|
c->vertex(i1)->point(),
|
|
c->vertex(i2)->point(),
|
|
p, perturb);
|
|
}
|
|
//else infinite facet
|
|
// v1, v2 finite vertices of the facet such that v1,v2,infinite
|
|
// is positively oriented
|
|
Vertex_handle v1 = c->vertex( next_around_edge(i3,i) ),
|
|
v2 = c->vertex( next_around_edge(i,i3) );
|
|
Orientation o = (Orientation)
|
|
(coplanar_orientation( v1->point(), v2->point(),
|
|
c->vertex(i)->point()) *
|
|
coplanar_orientation( v1->point(), v2->point(), p));
|
|
// then the code is duplicated from 2d case
|
|
if ( o != ZERO )
|
|
return Bounded_side( -o );
|
|
// because p is in f iff
|
|
// it is not on the same side of v1v2 as c->vertex(i)
|
|
// case when p collinear with v1v2 :
|
|
return side_of_bounded_power_segment(v1->point(),
|
|
v2->point(),
|
|
p, perturb);
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
Bounded_side
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
side_of_bounded_power_segment(const Weighted_point &p0,
|
|
const Weighted_point &p1,
|
|
const Weighted_point &p, bool perturb) const
|
|
{
|
|
Oriented_side os = power_test(p0, p1, p);
|
|
|
|
if (os != ON_ORIENTED_BOUNDARY || !perturb)
|
|
return Bounded_side(os);
|
|
|
|
// We are now in a degenerate case => we do a symbolic perturbation.
|
|
|
|
switch (this->collinear_position(p0, p, p1)) {
|
|
case Tr_Base::BEFORE: case Tr_Base::AFTER:
|
|
return ON_UNBOUNDED_SIDE;
|
|
case Tr_Base::MIDDLE:
|
|
return ON_BOUNDED_SIDE;
|
|
default:
|
|
;
|
|
}
|
|
|
|
CGAL_triangulation_assertion(false);
|
|
return ON_UNBOUNDED_SIDE;
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
Bounded_side
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
side_of_power_segment(Cell_handle c, const Weighted_point &p,
|
|
bool perturb) const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 1 );
|
|
if ( ! is_infinite(c,0,1) )
|
|
return side_of_bounded_power_segment(c->vertex(0)->point(),
|
|
c->vertex(1)->point(),
|
|
p, perturb);
|
|
Locate_type lt; int i;
|
|
Bounded_side soe = side_of_edge( p, c, lt, i );
|
|
if (soe != ON_BOUNDARY)
|
|
return soe;
|
|
// Either we compare weights, or we use the finite neighboring edge
|
|
Cell_handle finite_neighbor = c->neighbor(c->index(infinite_vertex()));
|
|
CGAL_triangulation_assertion(!is_infinite(finite_neighbor,0,1));
|
|
return side_of_bounded_power_segment(finite_neighbor->vertex(0)->point(),
|
|
finite_neighbor->vertex(1)->point(),
|
|
p, perturb);
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
bool
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
is_Gabriel(const Facet& f) const
|
|
{
|
|
return is_Gabriel(f.first, f.second);
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
bool
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
is_Gabriel(Cell_handle c, int i) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension() == 3 && !is_infinite(c,i));
|
|
typename Geom_traits::Side_of_bounded_orthogonal_sphere_3
|
|
side_of_bounded_orthogonal_sphere =
|
|
geom_traits().side_of_bounded_orthogonal_sphere_3_object();
|
|
|
|
if ((!is_infinite(c->vertex(i))) &&
|
|
side_of_bounded_orthogonal_sphere(
|
|
c->vertex(vertex_triple_index(i,0))->point(),
|
|
c->vertex(vertex_triple_index(i,1))->point(),
|
|
c->vertex(vertex_triple_index(i,2))->point(),
|
|
c->vertex(i)->point()) == ON_BOUNDED_SIDE ) return false;
|
|
|
|
Cell_handle neighbor = c->neighbor(i);
|
|
int in = neighbor->index(c);
|
|
|
|
if ((!is_infinite(neighbor->vertex(in))) &&
|
|
side_of_bounded_orthogonal_sphere(
|
|
c->vertex(vertex_triple_index(i,0))->point(),
|
|
c->vertex(vertex_triple_index(i,1))->point(),
|
|
c->vertex(vertex_triple_index(i,2))->point(),
|
|
neighbor->vertex(in)->point()) == ON_BOUNDED_SIDE ) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
template < class Gt, class Tds >
|
|
bool
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
is_Gabriel(const Edge& e) const
|
|
{
|
|
return is_Gabriel(e.first, e.second, e.third);
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
bool
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
is_Gabriel(Cell_handle c, int i, int j) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension() == 3 && !is_infinite(c,i,j));
|
|
typename Geom_traits::Side_of_bounded_orthogonal_sphere_3
|
|
side_of_bounded_orthogonal_sphere =
|
|
geom_traits().side_of_bounded_orthogonal_sphere_3_object();
|
|
|
|
Facet_circulator fcirc = incident_facets(c,i,j),
|
|
fdone(fcirc);
|
|
Vertex_handle v1 = c->vertex(i);
|
|
Vertex_handle v2 = c->vertex(j);
|
|
do {
|
|
// test whether the vertex of cc opposite to *fcirc
|
|
// is inside the sphere defined by the edge e = (s, i,j)
|
|
Cell_handle cc = (*fcirc).first;
|
|
int ii = (*fcirc).second;
|
|
if (!is_infinite(cc->vertex(ii)) &&
|
|
side_of_bounded_orthogonal_sphere( v1->point(),
|
|
v2->point(),
|
|
cc->vertex(ii)->point())
|
|
== ON_BOUNDED_SIDE ) return false;
|
|
} while(++fcirc != fdone);
|
|
return true;
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
bool
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
is_Gabriel(Vertex_handle v) const
|
|
{
|
|
return nearest_power_vertex( v->point().point(), v->cell()) == v;
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
insert(const Weighted_point & p, Cell_handle start)
|
|
{
|
|
Locate_type lt;
|
|
int li, lj;
|
|
Cell_handle c = locate(p, lt, li, lj, start);
|
|
return insert(p, lt, c, li, lj);
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
insert(const Weighted_point & p, Locate_type lt, Cell_handle c, int li, int lj)
|
|
{
|
|
switch (dimension()) {
|
|
case 3:
|
|
{
|
|
Conflict_tester_3 tester (p, this);
|
|
return insert_in_conflict(p, lt,c,li,lj, tester, hidden_point_visitor);
|
|
}
|
|
case 2:
|
|
{
|
|
Conflict_tester_2 tester (p, this);
|
|
return insert_in_conflict(p, lt,c,li,lj, tester, hidden_point_visitor);
|
|
}
|
|
case 1:
|
|
{
|
|
Conflict_tester_1 tester (p, this);
|
|
return insert_in_conflict(p, lt,c,li,lj, tester, hidden_point_visitor);
|
|
}
|
|
}
|
|
|
|
Conflict_tester_0 tester (p, this);
|
|
return insert_in_conflict(p, lt,c,li,lj, tester, hidden_point_visitor);
|
|
}
|
|
|
|
template <class Gt, class Tds >
|
|
template <class RegularTriangulation_3>
|
|
class Regular_triangulation_3<Gt, Tds>::Vertex_remover {
|
|
typedef RegularTriangulation_3 Regular;
|
|
typedef typename Gt::Point_3 Point;
|
|
public:
|
|
typedef typename std::vector<Point>::iterator
|
|
Hidden_points_iterator;
|
|
|
|
Vertex_remover(Regular &tmp_) : tmp(tmp_) {}
|
|
|
|
Regular &tmp;
|
|
|
|
void add_hidden_points(Cell_handle ch) {
|
|
std::copy (ch->hidden_points_begin(), ch->hidden_points_end(),
|
|
std::back_inserter(hidden));
|
|
}
|
|
|
|
Hidden_points_iterator hidden_points_begin() {
|
|
return hidden.begin();
|
|
}
|
|
Hidden_points_iterator hidden_points_end() {
|
|
return hidden.end();
|
|
}
|
|
|
|
Bounded_side side_of_bounded_circle(const Point &p, const Point &q,
|
|
const Point &r, const Point &s, bool perturb = false) const {
|
|
return tmp.side_of_bounded_power_circle(p,q,r,s,perturb);
|
|
}
|
|
|
|
private:
|
|
// The removal of v may un-hide some points,
|
|
// Space functions output them.
|
|
std::vector<Point> hidden;
|
|
};
|
|
|
|
// The displacement method works only
|
|
// on regular triangulation without hidden points at any time
|
|
// the vertex inserter is used only
|
|
// for the purpose of displacements
|
|
template <class Gt, class Tds >
|
|
template <class RegularTriangulation_3>
|
|
class Regular_triangulation_3<Gt, Tds>::Vertex_inserter {
|
|
typedef RegularTriangulation_3 Regular;
|
|
public:
|
|
typedef Nullptr_t Hidden_points_iterator;
|
|
|
|
Vertex_inserter(Regular &tmp_) : tmp(tmp_) {}
|
|
|
|
Regular &tmp;
|
|
|
|
void add_hidden_points(Cell_handle) {}
|
|
Hidden_points_iterator hidden_points_begin() { return NULL; }
|
|
Hidden_points_iterator hidden_points_end() { return NULL; }
|
|
|
|
Vertex_handle insert(const Weighted_point& p,
|
|
Locate_type lt, Cell_handle c, int li, int lj) {
|
|
return tmp.insert(p, lt, c, li, lj);
|
|
}
|
|
|
|
Vertex_handle insert(const Weighted_point& p, Cell_handle c) {
|
|
return tmp.insert(p, c);
|
|
}
|
|
|
|
Vertex_handle insert(const Weighted_point& p) {
|
|
return tmp.insert(p);
|
|
}
|
|
};
|
|
|
|
template < class Gt, class Tds >
|
|
void
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
remove(Vertex_handle v)
|
|
{
|
|
Cell_handle c;
|
|
if (dimension() > 0)
|
|
c = v->cell()->neighbor(v->cell()->index(v));
|
|
|
|
Self tmp;
|
|
Vertex_remover<Self> remover(tmp);
|
|
Tr_Base::remove(v,remover);
|
|
|
|
// Re-insert the points that v was hiding.
|
|
for (typename Vertex_remover<Self>::Hidden_points_iterator
|
|
hi = remover.hidden_points_begin();
|
|
hi != remover.hidden_points_end(); ++hi) {
|
|
Vertex_handle hv = insert (*hi, c);
|
|
if (hv != Vertex_handle()) c = hv->cell();
|
|
}
|
|
CGAL_triangulation_expensive_postcondition (is_valid());
|
|
}
|
|
|
|
// Again, verbatim copy from Delaunay.
|
|
template < class Gt, class Tds >
|
|
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
move_point(Vertex_handle v, const Weighted_point & p)
|
|
{
|
|
CGAL_triangulation_precondition(! is_infinite(v));
|
|
CGAL_triangulation_expensive_precondition(is_vertex(v));
|
|
|
|
// Dummy implementation for a start.
|
|
|
|
// Remember an incident vertex to restart
|
|
// the point location after the removal.
|
|
Cell_handle c = v->cell();
|
|
Vertex_handle old_neighbor = c->vertex(c->index(v) == 0 ? 1 : 0);
|
|
CGAL_triangulation_assertion(old_neighbor != v);
|
|
|
|
remove(v);
|
|
|
|
if (dimension() <= 0)
|
|
return insert(p);
|
|
return insert(p, old_neighbor->cell());
|
|
}
|
|
|
|
// Displacement works only for Regular triangulation
|
|
// without hidden points at any time
|
|
template < class Gt, class Tds >
|
|
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
move_if_no_collision(Vertex_handle v, const Weighted_point &p)
|
|
{
|
|
Self tmp;
|
|
Vertex_remover<Self> remover (tmp);
|
|
Vertex_inserter<Self> inserter (*this);
|
|
Vertex_handle res = Tr_Base::move_if_no_collision(v,p,remover,inserter);
|
|
|
|
CGAL_triangulation_expensive_postcondition(is_valid());
|
|
return res;
|
|
}
|
|
|
|
template <class Gt, class Tds >
|
|
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
move(Vertex_handle v, const Weighted_point &p) {
|
|
CGAL_triangulation_precondition(!is_infinite(v));
|
|
if(v->point() == p) return v;
|
|
Self tmp;
|
|
Vertex_remover<Self> remover (tmp);
|
|
Vertex_inserter<Self> inserter (*this);
|
|
return Tr_Base::move(v,p,remover,inserter);
|
|
}
|
|
|
|
template < class Gt, class Tds >
|
|
bool
|
|
Regular_triangulation_3<Gt,Tds>::
|
|
is_valid(bool verbose, int level) const
|
|
{
|
|
if ( ! Tr_Base::is_valid(verbose,level) ) {
|
|
if (verbose)
|
|
std::cerr << "invalid base triangulation" << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
|
|
switch ( dimension() ) {
|
|
case 3:
|
|
{
|
|
for(Finite_cells_iterator it = finite_cells_begin(), end = finite_cells_end(); it != end; ++it) {
|
|
is_valid_finite(it, verbose, level);
|
|
for(int i=0; i<4; i++) {
|
|
if ( !is_infinite
|
|
(it->neighbor(i)->vertex(it->neighbor(i)->index(it))) ) {
|
|
if ( side_of_power_sphere
|
|
(it,
|
|
it->neighbor(i)->vertex(it->neighbor(i)->index(it))->point())
|
|
== ON_BOUNDED_SIDE ) {
|
|
if (verbose)
|
|
std::cerr << "non-empty sphere " << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
for(Finite_facets_iterator it = finite_facets_begin(), end = finite_facets_end(); it!= end; ++it) {
|
|
is_valid_finite((*it).first, verbose, level);
|
|
for(int i=0; i<3; i++) {
|
|
if( !is_infinite
|
|
((*it).first->neighbor(i)->vertex( (((*it).first)->neighbor(i))
|
|
->index((*it).first))) ) {
|
|
if ( side_of_power_circle
|
|
( (*it).first, 3,
|
|
(*it).first->neighbor(i)->
|
|
vertex( (((*it).first)->neighbor(i))
|
|
->index((*it).first) )->point() )
|
|
== ON_BOUNDED_SIDE ) {
|
|
if (verbose)
|
|
std::cerr << "non-empty circle " << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case 1:
|
|
{
|
|
for(Finite_edges_iterator it = finite_edges_begin(), end = finite_edges_end(); it != end; ++it) {
|
|
is_valid_finite((*it).first, verbose, level);
|
|
for(int i=0; i<2; i++) {
|
|
if( !is_infinite
|
|
((*it).first->neighbor(i)->vertex( (((*it).first)->neighbor(i))
|
|
->index((*it).first))) ) {
|
|
if ( side_of_power_segment
|
|
( (*it).first,
|
|
(*it).first->neighbor(i)->
|
|
vertex( (((*it).first)->neighbor(i))
|
|
->index((*it).first) )->point() )
|
|
== ON_BOUNDED_SIDE ) {
|
|
if (verbose)
|
|
std::cerr << "non-empty edge " << std::endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (verbose)
|
|
std::cerr << "valid Regular triangulation" << std::endl;
|
|
return true;
|
|
}
|
|
|
|
} //namespace CGAL
|
|
|
|
#if defined(BOOST_MSVC)
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
#endif // CGAL_REGULAR_TRIANGULATION_3_H
|