mirror of https://github.com/CGAL/cgal
348 lines
8.5 KiB
C++
348 lines
8.5 KiB
C++
// Copyright (c) 2000 Utrecht University (The Netherlands),
|
|
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
|
|
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
|
|
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
|
|
// and Tel-Aviv University (Israel). All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public License as
|
|
// published by the Free Software Foundation; version 2.1 of the License.
|
|
// See the file LICENSE.LGPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $Source$
|
|
// $Revision$ $Date$
|
|
// $Name$
|
|
//
|
|
// Author(s) : Andreas Fabri
|
|
|
|
#ifndef CGAL_CARTESIAN_PLANE_3_H
|
|
#define CGAL_CARTESIAN_PLANE_3_H
|
|
|
|
#include <CGAL/Fourtuple.h>
|
|
|
|
CGAL_BEGIN_NAMESPACE
|
|
|
|
template <class R_>
|
|
class PlaneC3
|
|
{
|
|
typedef typename R_::FT FT;
|
|
typedef typename R_::Point_2 Point_2;
|
|
typedef typename R_::Point_3 Point_3;
|
|
typedef typename R_::Vector_3 Vector_3;
|
|
typedef typename R_::Direction_3 Direction_3;
|
|
typedef typename R_::Line_3 Line_3;
|
|
typedef typename R_::Ray_3 Ray_3;
|
|
typedef typename R_::Segment_3 Segment_3;
|
|
typedef typename R_::Plane_3 Plane_3;
|
|
typedef typename R_::Aff_transformation_3 Aff_transformation_3;
|
|
typedef typename R_::Construct_point_3 Construct_point_3;
|
|
typedef typename R_::Construct_point_2 Construct_point_2;
|
|
|
|
typedef Fourtuple<FT> Rep;
|
|
typedef typename R_::template Handle<Rep>::type Base;
|
|
|
|
Base base;
|
|
|
|
public:
|
|
typedef R_ R;
|
|
|
|
PlaneC3() {}
|
|
|
|
PlaneC3(const Point_3 &p, const Point_3 &q, const Point_3 &r)
|
|
{ *this = plane_from_points(p, q, r); }
|
|
|
|
PlaneC3(const Point_3 &p, const Direction_3 &d)
|
|
{ *this = plane_from_point_direction(p, d); }
|
|
|
|
PlaneC3(const Point_3 &p, const Vector_3 &v)
|
|
{ *this = plane_from_point_direction(p, v.direction()); }
|
|
|
|
PlaneC3(const FT &a, const FT &b, const FT &c, const FT &d)
|
|
: base(a, b, c, d) {}
|
|
|
|
PlaneC3(const Line_3 &l, const Point_3 &p)
|
|
{ *this = plane_from_points(l.point(),
|
|
l.point()+l.direction().to_vector(),
|
|
p); }
|
|
|
|
PlaneC3(const Segment_3 &s, const Point_3 &p)
|
|
{ *this = plane_from_points(s.start(), s.end(), p); }
|
|
|
|
PlaneC3(const Ray_3 &r, const Point_3 &p)
|
|
{ *this = plane_from_points(r.start(), r.second_point(), p); }
|
|
|
|
bool operator==(const PlaneC3 &p) const;
|
|
bool operator!=(const PlaneC3 &p) const;
|
|
|
|
const FT & a() const
|
|
{
|
|
return get(base).e0;
|
|
}
|
|
const FT & b() const
|
|
{
|
|
return get(base).e1;
|
|
}
|
|
const FT & c() const
|
|
{
|
|
return get(base).e2;
|
|
}
|
|
const FT & d() const
|
|
{
|
|
return get(base).e3;
|
|
}
|
|
|
|
Line_3 perpendicular_line(const Point_3 &p) const;
|
|
Plane_3 opposite() const;
|
|
|
|
Point_3 point() const;
|
|
Point_3 projection(const Point_3 &p) const;
|
|
Vector_3 orthogonal_vector() const;
|
|
Direction_3 orthogonal_direction() const;
|
|
Vector_3 base1() const;
|
|
Vector_3 base2() const;
|
|
|
|
Point_3 to_plane_basis(const Point_3 &p) const;
|
|
|
|
Point_2 to_2d(const Point_3 &p) const;
|
|
Point_3 to_3d(const Point_2 &p) const;
|
|
|
|
Plane_3 transform(const Aff_transformation_3 &t) const
|
|
{
|
|
if (t.is_even())
|
|
return PlaneC3<R>(t.transform(point()),
|
|
t.transpose().inverse().transform(orthogonal_direction()));
|
|
else
|
|
return PlaneC3<R>( t.transform(point()),
|
|
- t.transpose().inverse().transform(orthogonal_direction()));
|
|
}
|
|
|
|
Oriented_side oriented_side(const Point_3 &p) const;
|
|
bool has_on_positive_side(const Point_3 &l) const;
|
|
bool has_on_negative_side(const Point_3 &l) const;
|
|
bool has_on(const Point_3 &p) const
|
|
{
|
|
return oriented_side(p) == ON_ORIENTED_BOUNDARY;
|
|
}
|
|
bool has_on(const Line_3 &l) const
|
|
{
|
|
return has_on(l.point())
|
|
&& has_on(l.point() + l.direction().to_vector());
|
|
}
|
|
|
|
bool is_degenerate() const;
|
|
};
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_INLINE
|
|
bool
|
|
PlaneC3<R>::operator==(const PlaneC3<R> &p) const
|
|
{
|
|
if (CGAL::identical(base, p.base))
|
|
return true;
|
|
return equal_plane(*this, p);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
PlaneC3<R>::operator!=(const PlaneC3<R> &p) const
|
|
{
|
|
return !(*this == p);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
typename PlaneC3<R>::Point_3
|
|
PlaneC3<R>::point() const
|
|
{
|
|
return point_on_plane(*this);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
typename PlaneC3<R>::Point_3
|
|
PlaneC3<R>::
|
|
projection(const typename PlaneC3<R>::Point_3 &p) const
|
|
{
|
|
return projection_plane(p, *this);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
typename PlaneC3<R>::Vector_3
|
|
PlaneC3<R>::orthogonal_vector() const
|
|
{
|
|
return R().construct_orthogonal_vector_3_object()(*this);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
typename PlaneC3<R>::Direction_3
|
|
PlaneC3<R>::orthogonal_direction() const
|
|
{
|
|
return Direction_3(a(), b(), c());
|
|
}
|
|
|
|
template < class R >
|
|
typename PlaneC3<R>::Vector_3
|
|
PlaneC3<R>::base1() const
|
|
{
|
|
return R().construct_base_vector_3_object()(*this, 1);
|
|
}
|
|
|
|
template < class R >
|
|
typename PlaneC3<R>::Vector_3
|
|
PlaneC3<R>::base2() const
|
|
{
|
|
return R().construct_base_vector_3_object()(*this, 2);
|
|
}
|
|
|
|
template < class R >
|
|
typename PlaneC3<R>::Point_3
|
|
PlaneC3<R>::
|
|
to_plane_basis(const typename PlaneC3<R>::Point_3 &p) const
|
|
{
|
|
FT alpha, beta, gamma;
|
|
Construct_point_3 construct_point_3;
|
|
solve(base1(), base2(), orthogonal_vector(), p - point(),
|
|
alpha, beta, gamma);
|
|
|
|
return construct_point_3(alpha, beta, gamma);
|
|
}
|
|
|
|
template < class R >
|
|
typename PlaneC3<R>::Point_2
|
|
PlaneC3<R>::
|
|
to_2d(const typename PlaneC3<R>::Point_3 &p) const
|
|
{
|
|
FT alpha, beta, gamma;
|
|
Construct_point_2 construct_point_2;
|
|
|
|
solve(base1(), base2(), orthogonal_vector(), p - point(),
|
|
alpha, beta, gamma);
|
|
|
|
return construct_point_2(alpha, beta);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
typename PlaneC3<R>::Point_3
|
|
PlaneC3<R>::
|
|
to_3d(const typename PlaneC3<R>::Point_2 &p) const
|
|
{
|
|
return R().construct_lifted_point_3_object()(*this, p);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
typename PlaneC3<R>::Line_3
|
|
PlaneC3<R>::
|
|
perpendicular_line(const typename PlaneC3<R>::Point_3 &p) const
|
|
{
|
|
return Line_3(p, orthogonal_direction());
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
typename PlaneC3<R>::Plane_3
|
|
PlaneC3<R>::opposite() const
|
|
{
|
|
return PlaneC3<R>(-a(), -b(), -c(), -d());
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
Oriented_side
|
|
PlaneC3<R>::
|
|
oriented_side(const typename PlaneC3<R>::Point_3 &p) const
|
|
{
|
|
return side_of_oriented_plane(*this, p);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
PlaneC3<R>::
|
|
has_on_positive_side(const typename PlaneC3<R>::Point_3 &p) const
|
|
{
|
|
return oriented_side(p) == ON_POSITIVE_SIDE;
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
PlaneC3<R>::
|
|
has_on_negative_side(const typename PlaneC3<R>::Point_3 &p) const
|
|
{
|
|
return oriented_side(p) == ON_NEGATIVE_SIDE;
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
PlaneC3<R>::
|
|
is_degenerate() const
|
|
{ // FIXME : predicate
|
|
return CGAL_NTS is_zero(a()) && CGAL_NTS is_zero(b()) &&
|
|
CGAL_NTS is_zero(c());
|
|
}
|
|
|
|
#ifndef CGAL_NO_OSTREAM_INSERT_PLANEC3
|
|
template < class R >
|
|
std::ostream &
|
|
operator<<(std::ostream &os, const PlaneC3<R> &p)
|
|
{
|
|
switch(os.iword(IO::mode)) {
|
|
case IO::ASCII :
|
|
return os << p.a() << ' ' << p.b() << ' ' << p.c() << ' ' << p.d();
|
|
case IO::BINARY :
|
|
write(os, p.a());
|
|
write(os, p.b());
|
|
write(os, p.c());
|
|
write(os, p.d());
|
|
return os;
|
|
default:
|
|
os << "PlaneC3(" << p.a() << ", " << p.b() << ", ";
|
|
os << p.c() << ", " << p.d() <<")";
|
|
return os;
|
|
}
|
|
}
|
|
#endif // CGAL_NO_OSTREAM_INSERT_PLANEC3
|
|
|
|
#ifndef CGAL_NO_ISTREAM_EXTRACT_PLANEC3
|
|
template < class R >
|
|
std::istream &
|
|
operator>>(std::istream &is, PlaneC3<R> &p)
|
|
{
|
|
typename R::FT a, b, c, d;
|
|
switch(is.iword(IO::mode)) {
|
|
case IO::ASCII :
|
|
is >> a >> b >> c >> d;
|
|
break;
|
|
case IO::BINARY :
|
|
read(is, a);
|
|
read(is, b);
|
|
read(is, c);
|
|
read(is, d);
|
|
break;
|
|
default:
|
|
std::cerr << "" << std::endl;
|
|
std::cerr << "Stream must be in ascii or binary mode" << std::endl;
|
|
break;
|
|
}
|
|
if (is)
|
|
p = PlaneC3<R>(a, b, c, d);
|
|
return is;
|
|
}
|
|
#endif // CGAL_NO_ISTREAM_EXTRACT_PLANEC3
|
|
|
|
CGAL_END_NAMESPACE
|
|
|
|
#endif // CGAL_CARTESIAN_PLANE_3_H
|