mirror of https://github.com/CGAL/cgal
285 lines
7.1 KiB
C++
285 lines
7.1 KiB
C++
// Copyright (c) 2000 Utrecht University (The Netherlands),
|
|
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
|
|
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
|
|
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
|
|
// and Tel-Aviv University (Israel). All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public License as
|
|
// published by the Free Software Foundation; version 2.1 of the License.
|
|
// See the file LICENSE.LGPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $Source$
|
|
// $Revision$ $Date$
|
|
// $Name$
|
|
//
|
|
// Author(s) : Andreas Fabri
|
|
|
|
#ifndef CGAL_CARTESIAN_TETRAHEDRON_3_H
|
|
#define CGAL_CARTESIAN_TETRAHEDRON_3_H
|
|
|
|
#include <CGAL/Fourtuple.h>
|
|
#include <vector>
|
|
#include <functional>
|
|
|
|
CGAL_BEGIN_NAMESPACE
|
|
|
|
template <class R_>
|
|
class TetrahedronC3
|
|
{
|
|
typedef typename R_::FT FT;
|
|
typedef typename R_::Point_3 Point_3;
|
|
typedef typename R_::Plane_3 Plane_3;
|
|
typedef typename R_::Tetrahedron_3 Tetrahedron_3;
|
|
typedef typename R_::Aff_transformation_3 Aff_transformation_3;
|
|
|
|
typedef Fourtuple<Point_3> Rep;
|
|
typedef typename R_::template Handle<Rep>::type Base;
|
|
|
|
Base base;
|
|
|
|
public:
|
|
typedef R_ R;
|
|
|
|
TetrahedronC3() {}
|
|
|
|
TetrahedronC3(const Point_3 &p, const Point_3 &q, const Point_3 &r,
|
|
const Point_3 &s)
|
|
: base(p, q, r, s) {}
|
|
|
|
const Point_3 & vertex(int i) const;
|
|
const Point_3 & operator[](int i) const;
|
|
|
|
bool operator==(const TetrahedronC3 &t) const;
|
|
bool operator!=(const TetrahedronC3 &t) const;
|
|
|
|
Bbox_3 bbox() const;
|
|
|
|
Tetrahedron_3 transform(const Aff_transformation_3 &t) const
|
|
{
|
|
return TetrahedronC3<R>(t.transform(vertex(0)),
|
|
t.transform(vertex(1)),
|
|
t.transform(vertex(2)),
|
|
t.transform(vertex(3)));
|
|
}
|
|
|
|
Orientation orientation() const;
|
|
Oriented_side oriented_side(const Point_3 &p) const;
|
|
Bounded_side bounded_side(const Point_3 &p) const;
|
|
|
|
bool has_on_boundary(const Point_3 &p) const;
|
|
bool has_on_positive_side(const Point_3 &p) const;
|
|
bool has_on_negative_side(const Point_3 &p) const;
|
|
bool has_on_bounded_side(const Point_3 &p) const;
|
|
bool has_on_unbounded_side(const Point_3 &p) const;
|
|
|
|
bool is_degenerate() const;
|
|
FT volume() const;
|
|
};
|
|
|
|
template < class R >
|
|
bool
|
|
TetrahedronC3<R>::
|
|
operator==(const TetrahedronC3<R> &t) const
|
|
{
|
|
if (CGAL::identical(base, t.base))
|
|
return true;
|
|
if (orientation() != t.orientation())
|
|
return false;
|
|
|
|
std::vector< Point_3 > V1;
|
|
std::vector< Point_3 > V2;
|
|
typename std::vector< Point_3 >::iterator uniq_end1;
|
|
typename std::vector< Point_3 >::iterator uniq_end2;
|
|
int k;
|
|
for ( k=0; k < 4; k++) V1.push_back( vertex(k));
|
|
for ( k=0; k < 4; k++) V2.push_back( t.vertex(k));
|
|
typename R::Less_xyz_3 Less_object = R().less_xyz_3_object();
|
|
std::sort(V1.begin(), V1.end(), Less_object);
|
|
std::sort(V2.begin(), V2.end(), Less_object);
|
|
uniq_end1 = std::unique( V1.begin(), V1.end());
|
|
uniq_end2 = std::unique( V2.begin(), V2.end());
|
|
V1.erase( uniq_end1, V1.end());
|
|
V2.erase( uniq_end2, V2.end());
|
|
return V1 == V2;
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
TetrahedronC3<R>::
|
|
operator!=(const TetrahedronC3<R> &t) const
|
|
{
|
|
return !(*this == t);
|
|
}
|
|
|
|
template < class R >
|
|
const typename TetrahedronC3<R>::Point_3 &
|
|
TetrahedronC3<R>::
|
|
vertex(int i) const
|
|
{
|
|
if (i<0) i=(i%4)+4;
|
|
else if (i>3) i=i%4;
|
|
switch (i)
|
|
{
|
|
case 0: return get(base).e0;
|
|
case 1: return get(base).e1;
|
|
case 2: return get(base).e2;
|
|
default: return get(base).e3;
|
|
}
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
const typename TetrahedronC3<R>::Point_3 &
|
|
TetrahedronC3<R>::
|
|
operator[](int i) const
|
|
{
|
|
return vertex(i);
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_MEDIUM_INLINE
|
|
typename TetrahedronC3<R>::FT
|
|
TetrahedronC3<R>::volume() const
|
|
{
|
|
return R().compute_volume_3_object()(*this);
|
|
}
|
|
|
|
template < class R >
|
|
Orientation
|
|
TetrahedronC3<R>::
|
|
orientation() const
|
|
{
|
|
return R().orientation_3_object()(vertex(0), vertex(1),
|
|
vertex(2), vertex(3));
|
|
}
|
|
|
|
template < class R >
|
|
Oriented_side
|
|
TetrahedronC3<R>::
|
|
oriented_side(const typename TetrahedronC3<R>::Point_3 &p) const
|
|
{
|
|
Orientation o = orientation();
|
|
if (o != ZERO)
|
|
return Oriented_side(o * bounded_side(p));
|
|
|
|
CGAL_kernel_assertion (!is_degenerate());
|
|
return ON_ORIENTED_BOUNDARY;
|
|
}
|
|
|
|
template < class R >
|
|
Bounded_side
|
|
TetrahedronC3<R>::
|
|
bounded_side(const typename TetrahedronC3<R>::Point_3 &p) const
|
|
{
|
|
return R().bounded_side_3_object()
|
|
(static_cast<const typename R::Tetrahedron_3>(*this), p);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
TetrahedronC3<R>::has_on_boundary
|
|
(const typename TetrahedronC3<R>::Point_3 &p) const
|
|
{
|
|
return oriented_side(p) == ON_ORIENTED_BOUNDARY;
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
TetrahedronC3<R>::has_on_positive_side
|
|
(const typename TetrahedronC3<R>::Point_3 &p) const
|
|
{
|
|
return oriented_side(p) == ON_POSITIVE_SIDE;
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
TetrahedronC3<R>::has_on_negative_side
|
|
(const typename TetrahedronC3<R>::Point_3 &p) const
|
|
{
|
|
return oriented_side(p) == ON_NEGATIVE_SIDE;
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
TetrahedronC3<R>::has_on_bounded_side
|
|
(const typename TetrahedronC3<R>::Point_3 &p) const
|
|
{
|
|
return bounded_side(p) == ON_BOUNDED_SIDE;
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
TetrahedronC3<R>::has_on_unbounded_side
|
|
(const typename TetrahedronC3<R>::Point_3 &p) const
|
|
{
|
|
return bounded_side(p) == ON_UNBOUNDED_SIDE;
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
TetrahedronC3<R>::is_degenerate() const
|
|
{
|
|
return orientation() == COPLANAR;
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
Bbox_3
|
|
TetrahedronC3<R>::bbox() const
|
|
{
|
|
typename R::Construct_bbox_3 construct_bbox_3;
|
|
return construct_bbox_3(vertex(0)) + construct_bbox_3(vertex(1))
|
|
+ construct_bbox_3(vertex(2)) + construct_bbox_3(vertex(3));
|
|
}
|
|
|
|
#ifndef CGAL_NO_OSTREAM_INSERT_TETRAHEDRONC3
|
|
template < class R >
|
|
std::ostream &
|
|
operator<<(std::ostream &os, const TetrahedronC3<R> &t)
|
|
{
|
|
switch(os.iword(IO::mode)) {
|
|
case IO::ASCII :
|
|
return os << t[0] << ' ' << t[1] << ' ' << t[2] << ' ' << t[3];
|
|
case IO::BINARY :
|
|
return os << t[0] << t[1] << t[2] << t[3];
|
|
default:
|
|
os << "TetrahedronC3(" << t[0] << ", " << t[1] << ", " << t[2];
|
|
os << ", " << t[3] << ")";
|
|
return os;
|
|
}
|
|
}
|
|
#endif // CGAL_NO_OSTREAM_INSERT_TETRAHEDRONC3
|
|
|
|
#ifndef CGAL_NO_ISTREAM_EXTRACT_TETRAHEDRONC3
|
|
template < class R >
|
|
std::istream &
|
|
operator>>(std::istream &is, TetrahedronC3<R> &t)
|
|
{
|
|
typename R::Point_3 p, q, r, s;
|
|
|
|
is >> p >> q >> r >> s;
|
|
|
|
if (is)
|
|
t = TetrahedronC3<R>(p, q, r, s);
|
|
return is;
|
|
}
|
|
#endif // CGAL_NO_ISTREAM_EXTRACT_TETRAHEDRONC3
|
|
|
|
CGAL_END_NAMESPACE
|
|
|
|
#endif // CGAL_CARTESIAN_TETRAHEDRON_3_H
|