mirror of https://github.com/CGAL/cgal
115 lines
3.3 KiB
C++
115 lines
3.3 KiB
C++
// Copyright (c) 2007-2009 INRIA Sophia-Antipolis (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
|
// the terms of the Q Public License version 1.0.
|
|
// See the file LICENSE.QPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
//
|
|
// Author(s) : Laurent RINEAU, Stephane Tayeb
|
|
|
|
#ifndef CGAL_MESH_3_MIN_DIHEDRAL_ANGLE_H
|
|
#define CGAL_MESH_3_MIN_DIHEDRAL_ANGLE_H
|
|
|
|
#include <CGAL/Mesh_3/dihedral_angle_3.h>
|
|
#include <cmath>
|
|
|
|
namespace CGAL {
|
|
|
|
namespace Mesh_3 {
|
|
|
|
namespace details {
|
|
|
|
template <typename K>
|
|
typename K::FT
|
|
min_dihedral_angle_aux_compute_quotient(const typename K::Point_3& p0,
|
|
const typename K::Point_3& p1,
|
|
const typename K::Point_3& p2,
|
|
const typename K::Point_3& p3,
|
|
K k = K())
|
|
{
|
|
typename K::Construct_triangle_3 make_triangle =
|
|
k.construct_triangle_3_object();
|
|
typename K::Compute_area_3 area =
|
|
k.compute_area_3_object();
|
|
typename K::Compute_squared_distance_3 sq_distance =
|
|
k.compute_squared_distance_3_object();
|
|
|
|
return CGAL::sqrt(sq_distance(p0, p1))
|
|
/ area(make_triangle(p0, p1, p3))
|
|
/ area(make_triangle(p0, p1, p2));
|
|
}
|
|
|
|
} // end namespace details;
|
|
|
|
|
|
template <typename K>
|
|
typename K::FT
|
|
minimum_dihedral_angle(
|
|
const typename K::Point_3& p0,
|
|
const typename K::Point_3& p1,
|
|
const typename K::Point_3& p2,
|
|
const typename K::Point_3& p3,
|
|
K k = K())
|
|
{
|
|
typedef typename K::FT FT;
|
|
typename K::Compute_volume_3 volume =
|
|
k.compute_volume_3_object();
|
|
|
|
using details::min_dihedral_angle_aux_compute_quotient;
|
|
|
|
FT min_quotient =
|
|
min_dihedral_angle_aux_compute_quotient(p0, p1, p2, p3, k);
|
|
|
|
min_quotient =
|
|
(std::min)(min_quotient,
|
|
min_dihedral_angle_aux_compute_quotient(p0, p2, p1, p3, k));
|
|
min_quotient =
|
|
(std::min)(min_quotient,
|
|
min_dihedral_angle_aux_compute_quotient(p0, p3, p1, p2, k));
|
|
min_quotient =
|
|
(std::min)(min_quotient,
|
|
min_dihedral_angle_aux_compute_quotient(p1, p2, p0, p3, k));
|
|
min_quotient =
|
|
(std::min)(min_quotient,
|
|
min_dihedral_angle_aux_compute_quotient(p1, p3, p0, p2, k));
|
|
min_quotient =
|
|
(std::min)(min_quotient,
|
|
min_dihedral_angle_aux_compute_quotient(p2, p3, p0, p1, k));
|
|
|
|
const FT result (std::asin( FT(1.5) * volume(p0, p1, p2, p3) * min_quotient )
|
|
* FT(180) / FT(CGAL_PI));
|
|
|
|
return CGAL::abs(result);
|
|
}
|
|
|
|
|
|
template <typename K>
|
|
typename K::FT
|
|
minimum_dihedral_angle(const typename K::Tetrahedron_3& t, K k = K() )
|
|
{
|
|
return minimum_dihedral_angle(t[0],t[1],t[2],t[3],k);
|
|
}
|
|
|
|
template <typename Tetrahedron_3>
|
|
typename Kernel_traits<Tetrahedron_3>::Kernel::FT
|
|
minimum_dihedral_angle(const Tetrahedron_3& t )
|
|
{
|
|
return minimum_dihedral_angle(t, typename Kernel_traits<Tetrahedron_3>::Kernel() );
|
|
}
|
|
|
|
|
|
} // end namespace Mesh_3
|
|
} // end namespace CGAL
|
|
|
|
#endif // CGAL_MESH_3_MIN_DIHEDRAL_ANGLE_H
|