mirror of https://github.com/CGAL/cgal
2089 lines
75 KiB
C++
2089 lines
75 KiB
C++
#ifndef CGAL_SURFACE_MESH_APPROXIMATION_VSA_APPROXIMATION_H
|
|
#define CGAL_SURFACE_MESH_APPROXIMATION_VSA_APPROXIMATION_H
|
|
|
|
#include <CGAL/license/Surface_mesh_approximation.h>
|
|
|
|
|
|
#include <CGAL/boost/graph/helpers.h>
|
|
#include <CGAL/Kernel/global_functions.h>
|
|
#include <CGAL/squared_distance_3.h>
|
|
#include <CGAL/Polyhedron_incremental_builder_3.h>
|
|
#include <CGAL/Polyhedron_3.h>
|
|
#include <CGAL/linear_least_squares_fitting_3.h>
|
|
|
|
#include <CGAL/vsa_metrics.h>
|
|
#include <CGAL/Default.h>
|
|
#include <CGAL/tags.h>
|
|
|
|
#include <boost/graph/graph_traits.hpp>
|
|
#include <boost/graph/adjacency_list.hpp>
|
|
#include <boost/graph/dijkstra_shortest_paths.hpp>
|
|
#include <boost/graph/subgraph.hpp>
|
|
#include <boost/foreach.hpp>
|
|
#include <boost/optional.hpp>
|
|
|
|
#include <vector>
|
|
#include <stack>
|
|
#include <queue>
|
|
#include <iterator>
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
#include <tbb/parallel_for.h>
|
|
#include <tbb/blocked_range.h>
|
|
#endif // CGAL_LINKED_WITH_TBB
|
|
|
|
#ifdef CGAL_SURFACE_MESH_APPROXIMATION_DEBUG
|
|
#include <iostream>
|
|
#endif
|
|
|
|
#define CGAL_VSA_INVALID_TAG std::numeric_limits<std::size_t>::max()
|
|
|
|
namespace CGAL {
|
|
namespace VSA {
|
|
|
|
/*!
|
|
* \ingroup PkgTSMA
|
|
* @brief Seeding method enumeration for Variational Shape Approximation algorithm.
|
|
*/
|
|
enum Seeding {
|
|
/// Random seeding
|
|
Random,
|
|
/// Incremental seeding
|
|
Incremental,
|
|
/// Hierarchical seeding
|
|
Hierarchical
|
|
};
|
|
|
|
/*!
|
|
* \ingroup PkgTSMA
|
|
* @brief Main class for Variational Shape Approximation algorithm.
|
|
* @tparam TriangleMesh a CGAL TriangleMesh
|
|
* @tparam VertexPointMap vertex point map
|
|
* @tparam ErrorMetric error metric type
|
|
* @tparam ProxyFitting proxy fitting type
|
|
* @tparam GeomTraits geometric traits type
|
|
*/
|
|
template <typename TriangleMesh,
|
|
typename VertexPointMap,
|
|
typename ErrorMetric = CGAL::Default,
|
|
typename ProxyFitting = CGAL::Default,
|
|
typename GeomTraits = CGAL::Default,
|
|
typename Concurrency_tag = CGAL::Sequential_tag>
|
|
class Mesh_approximation {
|
|
// public typedefs
|
|
public:
|
|
// Default typedefs
|
|
/// Geometric trait type
|
|
typedef typename CGAL::Default::Get<
|
|
GeomTraits,
|
|
typename Kernel_traits<
|
|
typename boost::property_traits<VertexPointMap>::value_type
|
|
>::Kernel >::type Geom_traits;
|
|
/// ErrorMetric type
|
|
typedef typename CGAL::Default::Get<ErrorMetric,
|
|
CGAL::VSA::L21_metric<TriangleMesh, VertexPointMap, false, Geom_traits> >::type Error_metric;
|
|
/// ProxyFitting type
|
|
typedef typename CGAL::Default::Get<ProxyFitting,
|
|
CGAL::VSA::L21_proxy_fitting<TriangleMesh, VertexPointMap, Geom_traits> >::type Proxy_fitting;
|
|
/// Proxy type
|
|
typedef typename Error_metric::Proxy Proxy;
|
|
|
|
// private typedefs and data member
|
|
private:
|
|
// Geom_traits typedefs
|
|
typedef typename Geom_traits::FT FT;
|
|
typedef typename Geom_traits::Point_3 Point_3;
|
|
typedef typename Geom_traits::Vector_3 Vector_3;
|
|
typedef typename Geom_traits::Plane_3 Plane_3;
|
|
typedef typename Geom_traits::Construct_vector_3 Construct_vector_3;
|
|
typedef typename Geom_traits::Construct_point_3 Construct_point_3;
|
|
typedef typename Geom_traits::Construct_scaled_vector_3 Construct_scaled_vector_3;
|
|
typedef typename Geom_traits::Construct_sum_of_vectors_3 Construct_sum_of_vectors_3;
|
|
typedef typename Geom_traits::Compute_scalar_product_3 Compute_scalar_product_3;
|
|
typedef typename Geom_traits::Construct_translated_point_3 Construct_translated_point_3;
|
|
|
|
// graph_traits typedefs
|
|
typedef typename boost::graph_traits<TriangleMesh>::vertex_descriptor vertex_descriptor;
|
|
typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor halfedge_descriptor;
|
|
typedef typename boost::graph_traits<TriangleMesh>::edge_descriptor edge_descriptor;
|
|
typedef typename boost::graph_traits<TriangleMesh>::face_descriptor face_descriptor;
|
|
|
|
// internal typedefs
|
|
typedef CGAL::internal::vertex_property_t<std::size_t> Vertex_anchor_tag;
|
|
typedef typename CGAL::internal::dynamic_property_map<TriangleMesh, Vertex_anchor_tag >::type Vertex_anchor_map;
|
|
|
|
typedef CGAL::internal::face_property_t<std::size_t> Face_proxy_tag;
|
|
typedef typename CGAL::internal::dynamic_property_map<TriangleMesh, Face_proxy_tag >::type Face_proxy_map;
|
|
|
|
typedef std::vector<halfedge_descriptor> Boundary_chord;
|
|
typedef typename Boundary_chord::iterator Boundary_chord_iterator;
|
|
|
|
#ifdef CGAL_SURFACE_MESH_APPROXIMATION_DEBUG
|
|
public:
|
|
#endif
|
|
// The proxy wrapper for approximation.
|
|
struct Proxy_wrapper {
|
|
Proxy_wrapper(const Proxy &p, const std::size_t &i, const face_descriptor &s, const FT &e)
|
|
: px(p), idx(i), seed(s), err(e) {}
|
|
|
|
Proxy px; // parameterized proxy
|
|
std::size_t idx; // proxy index, maintained to be the same as its position in proxies vector
|
|
face_descriptor seed; // proxy seed
|
|
FT err; // proxy fitting error
|
|
};
|
|
#ifdef CGAL_SURFACE_MESH_APPROXIMATION_DEBUG
|
|
private:
|
|
#endif
|
|
|
|
// The proxy fitting plane for meshing.
|
|
struct Proxy_plane {
|
|
Proxy_plane(const Plane_3 &p, const Vector_3 &n, const FT &a)
|
|
: plane(p), normal(n), area(a) {}
|
|
|
|
Plane_3 plane;
|
|
Vector_3 normal;
|
|
FT area;
|
|
};
|
|
|
|
// The facet candidate to be queued.
|
|
struct Facet_to_integrate {
|
|
Facet_to_integrate(const face_descriptor &f_, const std::size_t &px_, const FT &err_)
|
|
: f(f_), px(px_), err(err_) {}
|
|
|
|
bool operator<(const Facet_to_integrate &rhs) const {
|
|
return err > rhs.err;
|
|
}
|
|
|
|
face_descriptor f; // facet
|
|
std::size_t px; // proxy index
|
|
FT err; // fitting error
|
|
};
|
|
|
|
// Proxy error with its index.
|
|
struct Proxy_error {
|
|
Proxy_error(const std::size_t &px_, const FT &err_)
|
|
: px(px_), err(err_) {}
|
|
|
|
// in ascending order
|
|
bool operator<(const Proxy_error &rhs) const {
|
|
return err < rhs.err;
|
|
}
|
|
|
|
std::size_t px;
|
|
FT err;
|
|
};
|
|
|
|
// The anchor attached to a vertex.
|
|
struct Anchor {
|
|
Anchor(const vertex_descriptor &vtx_, const Point_3 pos_)
|
|
: vtx(vtx_), pos(pos_) {}
|
|
|
|
vertex_descriptor vtx; // The associated vertex.
|
|
Point_3 pos; // The position of the anchor.
|
|
};
|
|
|
|
// The boundary cycle of a region.
|
|
// One region may have multiple boundary cycles.
|
|
struct Boundary_cycle {
|
|
Boundary_cycle(const halfedge_descriptor &h)
|
|
: he_head(h), num_anchors(0) {}
|
|
|
|
halfedge_descriptor he_head; // The heading halfedge of the boundary cylce.
|
|
std::size_t num_anchors; // The number of anchors on the boundary cycle.
|
|
};
|
|
|
|
// Triangle polyhedron builder.
|
|
template <typename HDS>
|
|
class Triangle_polyhedron_builder : public CGAL::Modifier_base<HDS> {
|
|
const std::vector<Point_3> &vtxs;
|
|
const std::vector<std::vector<std::size_t> > &tris;
|
|
public:
|
|
bool is_manifold;
|
|
Triangle_polyhedron_builder(const std::vector<Point_3> &vtxs_,
|
|
const std::vector<std::vector<std::size_t> > &tris_)
|
|
: vtxs(vtxs_), tris(tris_), is_manifold(true) {}
|
|
|
|
void operator()(HDS &hds) {
|
|
CGAL::Polyhedron_incremental_builder_3<HDS> builder(hds, true);
|
|
typedef typename HDS::Vertex Vertex;
|
|
typedef typename Vertex::Point Point;
|
|
builder.begin_surface(vtxs.size(), tris.size());
|
|
BOOST_FOREACH(const Point_3 &v, vtxs)
|
|
builder.add_vertex(Point(v));
|
|
BOOST_FOREACH(const std::vector<std::size_t> &t, tris) {
|
|
std::vector<std::size_t>::const_iterator itr = t.begin();
|
|
if (builder.test_facet(itr, itr + 3)) {
|
|
builder.begin_facet();
|
|
builder.add_vertex_to_facet(*itr);
|
|
builder.add_vertex_to_facet(*(itr + 1));
|
|
builder.add_vertex_to_facet(*(itr + 2));
|
|
builder.end_facet();
|
|
}
|
|
else
|
|
is_manifold = false;
|
|
}
|
|
builder.end_surface();
|
|
}
|
|
};
|
|
|
|
// member variables
|
|
// The triangle mesh.
|
|
const TriangleMesh *m_ptm;
|
|
// The mesh vertex point map.
|
|
VertexPointMap m_vpoint_map;
|
|
// The error metric functor.
|
|
const Error_metric *m_perror_metric;
|
|
// The proxy fitting functor.
|
|
const Proxy_fitting *m_pproxy_fitting;
|
|
|
|
Construct_vector_3 vector_functor;
|
|
Construct_point_3 point_functor;
|
|
Construct_scaled_vector_3 scale_functor;
|
|
Construct_sum_of_vectors_3 sum_functor;
|
|
Compute_scalar_product_3 scalar_product_functor;
|
|
Construct_translated_point_3 translate_point_functor;
|
|
|
|
// The facet proxy index map.
|
|
Face_proxy_map m_fproxy_map;
|
|
// The attached anchor index of a vertex.
|
|
Vertex_anchor_map m_vanchor_map;
|
|
|
|
// Proxies.
|
|
std::vector<Proxy_wrapper> m_proxies;
|
|
// Proxy planes
|
|
std::vector<Proxy_plane> m_px_planes;
|
|
|
|
// All anchors.
|
|
std::vector<Anchor> m_anchors;
|
|
// All boundary cycles.
|
|
std::vector<Boundary_cycle> m_bcycles;
|
|
// The indexed triangle approximation.
|
|
std::vector<std::vector<std::size_t> > m_tris;
|
|
|
|
// meshing parameters
|
|
FT m_average_edge_length;
|
|
|
|
//member functions
|
|
public:
|
|
/*!
|
|
* %Default constructor.
|
|
*/
|
|
Mesh_approximation() :
|
|
m_ptm(NULL),
|
|
m_perror_metric(NULL),
|
|
m_pproxy_fitting(NULL),
|
|
m_average_edge_length(0.0) {
|
|
|
|
Geom_traits traits;
|
|
vector_functor = traits.construct_vector_3_object();
|
|
point_functor = traits.construct_point_3_object();
|
|
scale_functor = traits.construct_scaled_vector_3_object();
|
|
sum_functor = traits.construct_sum_of_vectors_3_object();
|
|
scalar_product_functor = traits.compute_scalar_product_3_object();
|
|
translate_point_functor = traits.construct_translated_point_3_object();
|
|
}
|
|
|
|
/*!
|
|
* Initialize and prepare for the approximation.
|
|
* @param tm `CGAL TriangleMesh` on which approximation operates.
|
|
* @param vpoint_map vertex point map of the mesh
|
|
*/
|
|
Mesh_approximation(const TriangleMesh &tm, const VertexPointMap &vpoint_map) :
|
|
m_ptm(&tm),
|
|
m_vpoint_map(vpoint_map),
|
|
m_perror_metric(NULL),
|
|
m_pproxy_fitting(NULL),
|
|
m_average_edge_length(0.0) {
|
|
|
|
Geom_traits traits;
|
|
vector_functor = traits.construct_vector_3_object();
|
|
point_functor = traits.construct_point_3_object();
|
|
scale_functor = traits.construct_scaled_vector_3_object();
|
|
sum_functor = traits.construct_sum_of_vectors_3_object();
|
|
scalar_product_functor = traits.compute_scalar_product_3_object();
|
|
translate_point_functor = traits.construct_translated_point_3_object();
|
|
|
|
m_vanchor_map = CGAL::internal::add_property(
|
|
Vertex_anchor_tag("VSA-vertex_anchor"), *(const_cast<TriangleMesh *>(m_ptm)));
|
|
|
|
m_fproxy_map = CGAL::internal::add_property(
|
|
Face_proxy_tag("VSA-face_proxy"), *(const_cast<TriangleMesh *>(m_ptm)));
|
|
}
|
|
|
|
|
|
~Mesh_approximation() {
|
|
if (m_ptm) {
|
|
CGAL::internal::remove_property(m_vanchor_map, *(const_cast<TriangleMesh *>(m_ptm)));
|
|
CGAL::internal::remove_property(m_fproxy_map, *(const_cast<TriangleMesh *>(m_ptm)));
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* Set the mesh for approximation and rebuild the internal data structure.
|
|
* @pre @a tm.is_pure_triangle()
|
|
* @param tm `CGAL TriangleMesh` on which approximation operates.
|
|
* @param vpoint_map vertex point map of the mesh
|
|
*/
|
|
void set_mesh(const TriangleMesh &tm, const VertexPointMap &vpoint_map) {
|
|
m_ptm = &tm;
|
|
m_vpoint_map = vpoint_map;
|
|
rebuild();
|
|
}
|
|
|
|
/*!
|
|
* Set the error and fitting functor.
|
|
* @param error_metric_ an `ErrorMetric` functor.
|
|
* @param proxy_fitting_ a `ProxyFitting` functor.
|
|
*/
|
|
void set_metric(const Error_metric &error_metric_,
|
|
const Proxy_fitting &proxy_fitting_) {
|
|
m_perror_metric = &error_metric_;
|
|
m_pproxy_fitting = &proxy_fitting_;
|
|
}
|
|
|
|
/*!
|
|
* Rebuild the internal data structure.
|
|
*/
|
|
void rebuild() {
|
|
// cleanup
|
|
m_proxies.clear();
|
|
m_px_planes.clear();
|
|
m_anchors.clear();
|
|
m_bcycles.clear();
|
|
m_tris.clear();
|
|
|
|
if (!m_ptm)
|
|
return;
|
|
|
|
// rebuild internal data structure
|
|
CGAL::internal::remove_property(m_fproxy_map, *m_ptm);
|
|
m_fproxy_map = CGAL::internal::add_property(
|
|
Face_proxy_tag("VSA-face_proxy"), *(const_cast<TriangleMesh *>(m_ptm)));
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm))
|
|
put(m_fproxy_map, f, CGAL_VSA_INVALID_TAG);
|
|
|
|
CGAL::internal::remove_property(m_vanchor_map, *m_ptm);
|
|
m_vanchor_map = CGAL::internal::add_property(
|
|
Vertex_anchor_tag("VSA-vertex_anchor"), *(const_cast<TriangleMesh *>(m_ptm)));
|
|
BOOST_FOREACH(vertex_descriptor v, vertices(*m_ptm))
|
|
put(m_vanchor_map, v, CGAL_VSA_INVALID_TAG);
|
|
}
|
|
|
|
/*!
|
|
* @brief Initialize the seeds with both maximum number of proxies
|
|
* and minmum error drop stop criteria.
|
|
* The first criterion met stops the seeding.
|
|
* Parameters out of range are ignored.
|
|
* @param method seeding method
|
|
* @param max_nb_proxies maximum target number of proxies,
|
|
* should be in range (nb_connected_components, num_faces(tm) / 3)
|
|
* @param min_error_drop minimum error drop,
|
|
* should be in range (0.0, 1.0)
|
|
* @param nb_relaxations number of interleaved refitting relaxations
|
|
* in incremental and hierarchical seeding
|
|
* @return number of proxies initialized
|
|
*/
|
|
std::size_t seeding(const Seeding method = Hierarchical,
|
|
const boost::optional<std::size_t> max_nb_proxies = boost::optional<std::size_t>(),
|
|
const boost::optional<FT> min_error_drop = boost::optional<FT>(),
|
|
const std::size_t nb_relaxations = 5) {
|
|
// maximum number of proxies internally, maybe better choice?
|
|
const std::size_t nb_px = num_faces(*m_ptm) / 3;
|
|
|
|
// initialize proxies and the proxy map to prepare for insertion
|
|
bootstrap_from_connected_components();
|
|
|
|
if (min_error_drop && *min_error_drop > FT(0.0) && *min_error_drop < FT(1.0)) {
|
|
// as long as minimum error is specified and valid
|
|
// maximum number of proxies always exist, no matter specified or not or out of range
|
|
// there is always a maximum number of proxies explicitly (max_nb_proxies) or implicitly (nb_px)
|
|
std::size_t max_nb_px_adjusted = nb_px;
|
|
if (max_nb_proxies && *max_nb_proxies < nb_px && *max_nb_proxies > 0)
|
|
max_nb_px_adjusted = *max_nb_proxies;
|
|
switch (method) {
|
|
case Random:
|
|
return init_random_error(max_nb_px_adjusted, *min_error_drop, nb_relaxations);
|
|
case Incremental:
|
|
return init_incremental_error(max_nb_px_adjusted, *min_error_drop, nb_relaxations);
|
|
case Hierarchical:
|
|
return init_hierarchical_error(max_nb_px_adjusted, *min_error_drop, nb_relaxations);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
else if (max_nb_proxies && *max_nb_proxies < nb_px && *max_nb_proxies > 0) {
|
|
// no valid min_error_drop provided, only max_nb_proxies
|
|
switch (method) {
|
|
case Random:
|
|
return init_random(*max_nb_proxies, nb_relaxations);
|
|
case Incremental:
|
|
return init_incremental(*max_nb_proxies, nb_relaxations);
|
|
case Hierarchical:
|
|
return init_hierarchical(*max_nb_proxies, nb_relaxations);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
else {
|
|
// both parameters are unspecified or out of range
|
|
const FT e(0.1);
|
|
switch (method) {
|
|
case Random:
|
|
return init_random_error(nb_px, e, nb_relaxations);
|
|
case Incremental:
|
|
return init_incremental_error(nb_px, e, nb_relaxations);
|
|
case Hierarchical:
|
|
return init_hierarchical_error(nb_px, e, nb_relaxations);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* @brief Run the partitioning and fitting processes on the whole surface.
|
|
* @param nb_iterations number of iterations.
|
|
* @return total fitting error
|
|
*/
|
|
FT run(std::size_t nb_iterations = 1) {
|
|
for (std::size_t i = 0; i < nb_iterations; ++i) {
|
|
// tag the whole surface
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm))
|
|
put(m_fproxy_map, f, CGAL_VSA_INVALID_TAG);
|
|
|
|
partition(m_proxies.begin(), m_proxies.end());
|
|
fit(m_proxies.begin(), m_proxies.end(), Concurrency_tag());
|
|
}
|
|
|
|
return compute_total_error();
|
|
}
|
|
|
|
/*!
|
|
* @brief Run the partitioning and fitting process until no significant error change
|
|
* @param cvg_threshold the percentage of error change between two successive runs,
|
|
* should be in range (0, 1).
|
|
* @param max_iterations maximum number of iterations allowed
|
|
* @param avg_interval size of error average interval to have smoother convergence curve,
|
|
* if 0 is assigned, 1 is used instead.
|
|
* @return true if converged before hitting the maximum iterations, false otherwise
|
|
*/
|
|
bool run_to_converge(const FT cvg_threshold,
|
|
const std::size_t max_iterations = 100,
|
|
std::size_t avg_interval = 3) {
|
|
if (avg_interval == 0)
|
|
avg_interval = 1;
|
|
FT drop_pct(0.0);
|
|
FT pre_err = compute_total_error();
|
|
for (std::size_t itr_count = 0; itr_count < max_iterations; itr_count += avg_interval) {
|
|
if (pre_err == FT(0.0))
|
|
return true;
|
|
|
|
FT avg_err(0.0);
|
|
for (std::size_t i = 0; i < avg_interval; ++i)
|
|
avg_err += run();
|
|
avg_err /= static_cast<FT>(avg_interval);
|
|
|
|
drop_pct = (pre_err - avg_err) / pre_err;
|
|
// the error may fluctuates
|
|
if (drop_pct < FT(0.0))
|
|
drop_pct = -drop_pct;
|
|
if (drop_pct < cvg_threshold)
|
|
return true;
|
|
|
|
pre_err = avg_err;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*!
|
|
* @brief Computes fitting error of current partition to the proxies.
|
|
* @return total fitting error
|
|
*/
|
|
FT compute_total_error() {
|
|
FT sum_error(0.0);
|
|
BOOST_FOREACH(const Proxy_wrapper &pxw, m_proxies)
|
|
sum_error += pxw.err;
|
|
|
|
#ifdef CGAL_SURFACE_MESH_APPROXIMATION_DEBUG
|
|
static std::size_t count = 0;
|
|
std::cerr << '#' << count++ << ": " << sum_error << std::endl;
|
|
#endif
|
|
|
|
return sum_error;
|
|
}
|
|
|
|
/*!
|
|
* @brief Add proxies to the worst regions one by one.
|
|
* The re-fitting is performed after each proxy is inserted.
|
|
* @param num_proxies number of proxies to be added
|
|
* @param nb_iterations number of re-fitting iterations
|
|
* @return number of proxies added
|
|
*/
|
|
std::size_t add_proxies_furthest(const std::size_t num_proxies,
|
|
const std::size_t nb_iterations = 5) {
|
|
std::size_t num_added = 0;
|
|
while (num_added < num_proxies) {
|
|
if (!add_proxy_furthest())
|
|
break;
|
|
++num_added;
|
|
run(nb_iterations);
|
|
}
|
|
return num_added;
|
|
}
|
|
|
|
/*!
|
|
* @brief Add proxies by diffusing fitting error into current partitions.
|
|
* Each partition is added with the number of proxies in proportional to its fitting error.
|
|
* @param num_proxies number of proxies to be added
|
|
* @return number of proxies successfully added
|
|
*/
|
|
std::size_t add_proxies_error_diffusion(const std::size_t num_proxies) {
|
|
#ifdef CGAL_SURFACE_MESH_APPROXIMATION_DEBUG
|
|
std::cerr << "#px " << m_proxies.size() << std::endl;
|
|
#endif
|
|
|
|
const FT sum_error = compute_total_error();
|
|
const FT avg_error = sum_error / FT(static_cast<double>(num_proxies));
|
|
|
|
std::vector<Proxy_error> px_error;
|
|
for (std::size_t i = 0; i < m_proxies.size(); ++i)
|
|
px_error.push_back(Proxy_error(i, m_proxies[i].err));
|
|
// sort partition by error
|
|
std::sort(px_error.begin(), px_error.end());
|
|
|
|
// number of proxies to be added to each region
|
|
std::vector<std::size_t> num_to_add(m_proxies.size(), 0);
|
|
if (avg_error == FT(0.0)) {
|
|
// rare case on extremely regular geometry like a cube
|
|
#ifdef CGAL_SURFACE_MESH_APPROXIMATION_DEBUG
|
|
std::cerr << "zero error, diffuse w.r.t. number of facets" << std::endl;
|
|
#endif
|
|
const FT avg_facet = FT(
|
|
static_cast<double>(num_faces(*m_ptm)) / static_cast<double>(num_proxies));
|
|
std::vector<FT> px_size(m_proxies.size(), FT(0.0));
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm))
|
|
px_size[get(m_fproxy_map, f)] += FT(1.0);
|
|
FT residual(0.0);
|
|
for (std::size_t i = 0; i < m_proxies.size(); ++i) {
|
|
FT to_add = (residual + px_size[i]) / avg_facet;
|
|
FT floor_to_add = FT(std::floor(CGAL::to_double(to_add)));
|
|
FT q_to_add = FT(CGAL::to_double(
|
|
((to_add - floor_to_add) > FT(0.5)) ? (floor_to_add + FT(1.0)) : floor_to_add));
|
|
residual = (to_add - q_to_add) * avg_facet;
|
|
num_to_add[i] = static_cast<std::size_t>(CGAL::to_double(q_to_add));
|
|
}
|
|
}
|
|
else {
|
|
// residual from previous proxy in range (-0.5, 0.5] * avg_error
|
|
FT residual(0.0);
|
|
BOOST_FOREACH(const Proxy_error &pxe, px_error) {
|
|
// add error residual from previous proxy
|
|
// to_add maybe negative but greater than -0.5
|
|
FT to_add = (residual + pxe.err) / avg_error;
|
|
// floor_to_add maybe negative but no less than -1
|
|
FT floor_to_add = FT(std::floor(CGAL::to_double(to_add)));
|
|
FT q_to_add = FT(CGAL::to_double(
|
|
((to_add - floor_to_add) > FT(0.5)) ? (floor_to_add + FT(1.0)) : floor_to_add));
|
|
residual = (to_add - q_to_add) * avg_error;
|
|
num_to_add[pxe.px] = static_cast<std::size_t>(CGAL::to_double(q_to_add));
|
|
}
|
|
}
|
|
|
|
#ifdef CGAL_SURFACE_MESH_APPROXIMATION_DEBUG
|
|
for (std::size_t i = 0; i < px_error.size(); ++i)
|
|
std::cerr << "#px " << px_error[i].px
|
|
<< ", #error " << px_error[i].err
|
|
<< ", #num_to_add " << num_to_add[px_error[i].px] << std::endl;
|
|
#endif
|
|
|
|
std::size_t num_added = 0;
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm)) {
|
|
const std::size_t px_id = get(m_fproxy_map, f);
|
|
if (m_proxies[px_id].seed == f)
|
|
continue;
|
|
|
|
if (num_to_add[px_id] > 0) {
|
|
add_one_proxy_at(f);
|
|
--num_to_add[px_id];
|
|
++num_added;
|
|
}
|
|
}
|
|
|
|
#ifdef CGAL_SURFACE_MESH_APPROXIMATION_DEBUG
|
|
std::cerr << "#requested/added "
|
|
<< num_proxies << '/' << num_added << std::endl;
|
|
#endif
|
|
|
|
return num_added;
|
|
}
|
|
|
|
/*!
|
|
* @brief Teleport the local minima to the worst region, this combines the merging and adding processes.
|
|
* The re-fitting is performed after each teleportation.
|
|
* Here if we specify more than one proxy this means we teleport in a naive iterative fashion.
|
|
* @param num_proxies number of proxies request to teleport
|
|
* @param num_iterations number of re-fitting iterations
|
|
* @param if_force true to force the teleportation (no merge test)
|
|
* @return number of proxies teleported.
|
|
*/
|
|
std::size_t teleport_proxies(const std::size_t num_proxies,
|
|
const std::size_t num_iterations = 5,
|
|
const bool if_force = false) {
|
|
std::size_t num_teleported = 0;
|
|
while (num_teleported < num_proxies) {
|
|
// find worst proxy
|
|
std::size_t px_worst = 0;
|
|
FT max_error = m_proxies.front().err;
|
|
for (std::size_t i = 0; i < m_proxies.size(); ++i) {
|
|
if (max_error < m_proxies[i].err) {
|
|
max_error = m_proxies[i].err;
|
|
px_worst = i;
|
|
}
|
|
}
|
|
bool found = false;
|
|
face_descriptor tele_to;
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm)) {
|
|
if (get(m_fproxy_map, f) == px_worst && f != m_proxies[px_worst].seed) {
|
|
// teleport to anywhere but the seed
|
|
tele_to = f;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
return num_teleported;
|
|
|
|
// find the best merge pair
|
|
std::size_t px_enlarged = 0, px_merged = 0;
|
|
if (!find_best_merge(px_enlarged, px_merged, !if_force))
|
|
return num_teleported;
|
|
if (px_worst == px_enlarged || px_worst == px_merged)
|
|
return num_teleported;
|
|
|
|
// teleport to a facet of the worst region
|
|
// update merged proxies
|
|
std::list<face_descriptor> merged_patch;
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm)) {
|
|
std::size_t px_idx = get(m_fproxy_map, f);
|
|
if (px_idx == px_enlarged || px_idx == px_merged) {
|
|
put(m_fproxy_map, f, px_enlarged);
|
|
merged_patch.push_back(f);
|
|
}
|
|
}
|
|
m_proxies[px_enlarged] = fit_proxy_from_patch(merged_patch, px_enlarged);
|
|
// replace the merged proxy position to the newly teleported proxy
|
|
m_proxies[px_merged] = fit_proxy_from_facet(tele_to, px_merged);
|
|
|
|
num_teleported++;
|
|
// coarse re-fitting
|
|
run(num_iterations);
|
|
|
|
#ifdef CGAL_SURFACE_MESH_APPROXIMATION_DEBUG
|
|
std::cerr << "teleported" << std::endl;
|
|
#endif
|
|
}
|
|
|
|
return num_teleported;
|
|
}
|
|
|
|
/*!
|
|
* @brief Merge two specified adjacent regions.
|
|
* The overall re-fitting is not performed and the proxy map is maintained.
|
|
* @pre two proxies must be adjacent, and px0 < px1 < proxies.size()
|
|
* @param px0 the enlarged proxy
|
|
* @param px1 the merged proxy
|
|
* @return change of error
|
|
*/
|
|
FT merge(const std::size_t px0, const std::size_t px1) {
|
|
// ensure px0 < px1
|
|
if (px0 >= px1 || px1 >= m_proxies.size())
|
|
return FT(0.0);
|
|
|
|
const FT pre_err = m_proxies[px0].err + m_proxies[px1].err;
|
|
// merge px1 to px0
|
|
std::list<face_descriptor> merged_patch;
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm)) {
|
|
std::size_t px_idx = get(m_fproxy_map, f);
|
|
if (px_idx == px1 || px_idx == px0) {
|
|
put(m_fproxy_map, f, px0);
|
|
merged_patch.push_back(f);
|
|
}
|
|
}
|
|
m_proxies[px0] = fit_proxy_from_patch(merged_patch, px0);
|
|
|
|
// erase px1 and maintain proxy index
|
|
m_proxies.erase(m_proxies.begin() + px1);
|
|
for (std::size_t i = 0; i < m_proxies.size(); ++i)
|
|
m_proxies[i].idx = i;
|
|
// keep facet proxy map valid
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm)) {
|
|
if (get(m_fproxy_map, f) > px1)
|
|
put(m_fproxy_map, f, get(m_fproxy_map, f) - 1);
|
|
}
|
|
|
|
return m_proxies[px0].err - pre_err;
|
|
}
|
|
|
|
/*!
|
|
* @brief Simulate merging and local re-fitting of all two adjacent proxies
|
|
* and find the best two regions to merge.
|
|
* @note The <b>best</b> is defined as the minimum merged sum error
|
|
* <b>change</b> (increase of decrease) among all adjacent pairs.
|
|
* @param[out] px_tobe_enlarged the proxy index to be enlarged
|
|
* @param[out] px_tobe_merged the proxy index to be merged,
|
|
* guaranteed to be greater than <em>px_tobe_enlarged</em>.
|
|
* @param if_test true to activate the merge test.
|
|
* The merge test is considered successful if the merged error change
|
|
* is less than the half of the maximum proxy error.
|
|
* @return true if best merge pair found, false otherwise
|
|
*/
|
|
bool find_best_merge(std::size_t &px_tobe_enlarged,
|
|
std::size_t &px_tobe_merged,
|
|
const bool if_test) {
|
|
typedef typename boost::graph_traits<TriangleMesh>::edge_descriptor edge_descriptor;
|
|
typedef std::pair<std::size_t, std::size_t> ProxyPair;
|
|
typedef std::set<ProxyPair> MergedPair;
|
|
|
|
std::vector<std::list<face_descriptor> > px_facets(m_proxies.size());
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm))
|
|
px_facets[get(m_fproxy_map, f)].push_back(f);
|
|
|
|
// find best merge
|
|
MergedPair merged_set;
|
|
FT min_error_change = FT(0.0);
|
|
bool first_merge = true;
|
|
BOOST_FOREACH(edge_descriptor e, edges(*m_ptm)) {
|
|
if (CGAL::is_border(e, *m_ptm))
|
|
continue;
|
|
std::size_t pxi = get(m_fproxy_map, face(halfedge(e, *m_ptm), *m_ptm));
|
|
std::size_t pxj = get(m_fproxy_map, face(opposite(halfedge(e, *m_ptm), *m_ptm), *m_ptm));
|
|
if (pxi == pxj)
|
|
continue;
|
|
if (pxi > pxj)
|
|
std::swap(pxi, pxj);
|
|
if (merged_set.find(ProxyPair(pxi, pxj)) != merged_set.end())
|
|
continue;
|
|
|
|
merged_set.insert(ProxyPair(pxi, pxj));
|
|
// simulated merge
|
|
std::list<face_descriptor> merged_patch(px_facets[pxi]);
|
|
BOOST_FOREACH(face_descriptor f, px_facets[pxj])
|
|
merged_patch.push_back(f);
|
|
Proxy_wrapper pxw_tmp = fit_proxy_from_patch(merged_patch, CGAL_VSA_INVALID_TAG);
|
|
|
|
const FT error_change = pxw_tmp.err - (m_proxies[pxi].err + m_proxies[pxj].err);
|
|
if (first_merge || error_change < min_error_change) {
|
|
first_merge = false;
|
|
min_error_change = error_change;
|
|
px_tobe_enlarged = pxi;
|
|
px_tobe_merged = pxj;
|
|
}
|
|
}
|
|
|
|
if (merged_set.empty())
|
|
return false;
|
|
|
|
// test if merge worth it
|
|
if (if_test) {
|
|
FT max_error = m_proxies.front().err;
|
|
for (std::size_t i = 0; i < m_proxies.size(); ++i) {
|
|
if (max_error < m_proxies[i].err)
|
|
max_error = m_proxies[i].err;
|
|
}
|
|
if (min_error_change > max_error / FT(2.0))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* @brief Split one proxy area by default bisection, but N-section is also possible.
|
|
* @param px_idx proxy index
|
|
* @param n number of split sections
|
|
* @param nb_relaxations number of relaxation on the confined proxy area
|
|
* @return true if split succeeds, false otherwise
|
|
*/
|
|
bool split(const std::size_t px_idx,
|
|
const std::size_t n = 2,
|
|
const std::size_t nb_relaxations = 10) {
|
|
if (px_idx >= m_proxies.size())
|
|
return false;
|
|
|
|
// collect confined proxy area
|
|
std::list<face_descriptor> confined_area;
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm))
|
|
if (get(m_fproxy_map, f) == px_idx)
|
|
confined_area.push_back(f);
|
|
// not enough facets to split
|
|
if (n > confined_area.size())
|
|
return false;
|
|
|
|
// a copy of confined proxies
|
|
std::vector<Proxy_wrapper> confined_proxies;
|
|
confined_proxies.push_back(m_proxies[px_idx]);
|
|
|
|
// select seed facets in the confiend area
|
|
std::size_t count = 1;
|
|
BOOST_FOREACH(face_descriptor f, confined_area) {
|
|
if (count >= n)
|
|
break;
|
|
|
|
if (f != m_proxies[px_idx].seed) {
|
|
add_one_proxy_at(f);
|
|
++count;
|
|
// copy
|
|
confined_proxies.push_back(m_proxies.back());
|
|
}
|
|
}
|
|
|
|
// relaxation on confined area and proxies
|
|
for (std::size_t i = 0; i < nb_relaxations; ++i) {
|
|
BOOST_FOREACH(face_descriptor f, confined_area)
|
|
put(m_fproxy_map, f, CGAL_VSA_INVALID_TAG);
|
|
|
|
partition(confined_proxies.begin(), confined_proxies.end());
|
|
fit(confined_proxies.begin(), confined_proxies.end(), Concurrency_tag());
|
|
}
|
|
|
|
// copy back
|
|
BOOST_FOREACH(const Proxy_wrapper &pxw, confined_proxies)
|
|
m_proxies[pxw.idx] = pxw;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* @brief Extract the approximated surface mesh.
|
|
* @note If the extracted surface mesh contains non-manifold facets,
|
|
* they are not built into the output polyhedron.
|
|
* @tparam PolyhedronSurface should be `CGAL::Polyhedron_3`
|
|
* @param[out] tm_out output triangle mesh
|
|
* @param chord_error boundary approximation recursively split criterion
|
|
* @param is_relative_to_chord true if the chord_error is relative to the the chord length (relative sense),
|
|
* otherwise it's relative to the average edge length (absolute sense).
|
|
* @param with_dihedral_angle true if add dihedral angle weight to the distance, false otherwise
|
|
* @param optimize_anchor_location true if optimize the anchor locations, false otherwise
|
|
* @param pca_plane true if use PCA plane fitting, otherwise use the default area averaged plane parameters
|
|
* @return true if the extracted surface mesh is manifold, false otherwise.
|
|
*/
|
|
template <typename PolyhedronSurface>
|
|
bool extract_mesh(PolyhedronSurface &tm_out,
|
|
const FT chord_error = FT(5.0),
|
|
const bool is_relative_to_chord = false,
|
|
const bool with_dihedral_angle = false,
|
|
const bool optimize_anchor_location = true,
|
|
const bool pca_plane = false) {
|
|
// compute averaged edge length, used in chord subdivision
|
|
m_average_edge_length = compute_averaged_edge_length(*m_ptm, m_vpoint_map);
|
|
|
|
// initialize all vertex anchor status
|
|
BOOST_FOREACH(vertex_descriptor v, vertices(*m_ptm))
|
|
put(m_vanchor_map, v, CGAL_VSA_INVALID_TAG);
|
|
m_anchors.clear();
|
|
m_bcycles.clear();
|
|
m_tris.clear();
|
|
m_px_planes.clear();
|
|
|
|
// compute proxy planes, used for subdivision and anchor location
|
|
compute_proxy_planes(pca_plane);
|
|
|
|
// generate anchors
|
|
find_anchors();
|
|
find_edges(chord_error, is_relative_to_chord, with_dihedral_angle);
|
|
add_anchors();
|
|
|
|
// discrete constrained Delaunay triangulation
|
|
pseudo_cdt();
|
|
|
|
if (optimize_anchor_location)
|
|
this->optimize_anchor_location();
|
|
|
|
return build_polyhedron_surface(tm_out);
|
|
}
|
|
|
|
/*!
|
|
* @brief Get the facet-proxy index map.
|
|
* @tparam FacetProxyMap `WritablePropertyMap` with
|
|
* `boost::graph_traits<TriangleMesh>::%face_descriptor` as key and `std::size_t` as value type
|
|
* @param[out] facet_proxy_map facet proxy index map
|
|
*/
|
|
template <typename FacetProxyMap>
|
|
void proxy_map(FacetProxyMap &facet_proxy_map) const {
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm))
|
|
facet_proxy_map[f] = get(m_fproxy_map, f);
|
|
}
|
|
|
|
/*!
|
|
* @brief Get the facet region of the specified proxy.
|
|
* @tparam OutputIterator output iterator with `boost::graph_traits<TriangleMesh>::%face_descriptor` as value type
|
|
* @param px_idx proxy index
|
|
* @param out_itr output iterator
|
|
*/
|
|
template <typename OutputIterator>
|
|
void proxy_region(const std::size_t px_idx, OutputIterator out_itr) const {
|
|
if (px_idx >= m_proxies.size())
|
|
return;
|
|
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm))
|
|
if (get(m_fproxy_map, f) == px_idx)
|
|
*out_itr++ = f;
|
|
}
|
|
|
|
/*!
|
|
* @brief Get the proxies.
|
|
* @tparam OutputIterator output iterator with Proxy as value type
|
|
* @param out_itr output iterator
|
|
*/
|
|
template <typename OutputIterator>
|
|
void proxies(OutputIterator out_itr) const {
|
|
BOOST_FOREACH(const Proxy_wrapper &pxw, m_proxies)
|
|
*out_itr++ = pxw.px;
|
|
}
|
|
|
|
#ifdef CGAL_SURFACE_MESH_APPROXIMATION_DEBUG
|
|
/*!
|
|
* @brief Get the wrapped proxies.
|
|
* @tparam OutputIterator output iterator with Proxy_wrapper as value type
|
|
* @param out_itr output iterator
|
|
*/
|
|
template <typename OutputIterator>
|
|
void wrapped_proxies(OutputIterator out_itr) const {
|
|
BOOST_FOREACH(const Proxy_wrapper &pxw, m_proxies)
|
|
*out_itr++ = pxw;
|
|
}
|
|
#endif
|
|
|
|
/*!
|
|
* @brief Get the proxies size.
|
|
* @return number of proxies
|
|
*/
|
|
std::size_t proxies_size() const { return m_proxies.size(); }
|
|
|
|
/*!
|
|
* @brief Get the anchor points, which have the area-averaged position of the projected anchor vertex points on the incident proxies.
|
|
* @tparam OutputIterator output iterator with Point_3 as value type
|
|
* @param out_itr output iterator
|
|
*/
|
|
template <typename OutputIterator>
|
|
void anchor_points(OutputIterator out_itr) const {
|
|
BOOST_FOREACH(const Anchor &a, m_anchors)
|
|
*out_itr++ = a.pos;
|
|
}
|
|
|
|
/*!
|
|
* @brief Get the anchor vertices.
|
|
* @tparam OutputIterator output iterator with vertex_descriptor as value type
|
|
* @param out_itr output iterator
|
|
*/
|
|
template <typename OutputIterator>
|
|
void anchor_vertices(OutputIterator out_itr) const {
|
|
BOOST_FOREACH(const Anchor &a, m_anchors)
|
|
*out_itr++ = a.vtx;
|
|
}
|
|
|
|
/*!
|
|
* @brief Get the indexed triangles,
|
|
* one triplet of integers per triangles, which refers to the anchor point indexes.
|
|
* @tparam OutputIterator output iterator with std::vector<size_t> as value type
|
|
* @param out_itr output iterator
|
|
*/
|
|
template <typename OutputIterator>
|
|
void indexed_triangles(OutputIterator out_itr) const {
|
|
BOOST_FOREACH(const std::vector<std::size_t> &t, m_tris)
|
|
*out_itr++ = t;
|
|
}
|
|
|
|
/*!
|
|
* @brief Get the indexed boundary polygon approximation.
|
|
* @tparam OutputIterator output iterator with std::vector<std::size_t> as value type
|
|
*/
|
|
template <typename OutputIterator>
|
|
void indexed_boundary_polygons(OutputIterator out_itr) const {
|
|
BOOST_FOREACH(const Boundary_cycle &bcycle, m_bcycles) {
|
|
std::vector<std::size_t> plg;
|
|
halfedge_descriptor he = bcycle.he_head;
|
|
do {
|
|
Boundary_chord chord;
|
|
walk_to_next_anchor(he, chord);
|
|
plg.push_back(get(m_vanchor_map, target(he, *m_ptm)));
|
|
} while (he != bcycle.he_head);
|
|
*out_itr++ = plg;
|
|
}
|
|
}
|
|
|
|
// private member functions
|
|
private:
|
|
/*!
|
|
* @brief Random initialize proxies to target number of proxies.
|
|
* @note To ensure the randomness, call `std::srand()` beforehand.
|
|
* @param max_nb_proxies maximum number of proxies,
|
|
* should be in range (nb_connected_components, num_faces(*m_ptm))
|
|
* @param num_iterations number of re-fitting iterations
|
|
* @return number of proxies initialized
|
|
*/
|
|
std::size_t init_random(const std::size_t max_nb_proxies,
|
|
const std::size_t num_iterations) {
|
|
// pick from current non seed facets randomly
|
|
std::vector<face_descriptor> picked_seeds;
|
|
if (random_pick_non_seed_facets(max_nb_proxies - m_proxies.size(), picked_seeds)) {
|
|
BOOST_FOREACH(face_descriptor f, picked_seeds)
|
|
add_one_proxy_at(f);
|
|
run(num_iterations);
|
|
}
|
|
|
|
return m_proxies.size();
|
|
}
|
|
|
|
/*!
|
|
* @brief Incremental initialize proxies to target number of proxies.
|
|
* @param max_nb_proxies maximum number of proxies,
|
|
* should be in range (nb_connected_components, num_faces(*m_ptm))
|
|
* @param num_iterations number of re-fitting iterations
|
|
* before each incremental proxy insertion
|
|
* @return number of proxies initialized
|
|
*/
|
|
std::size_t init_incremental(const std::size_t max_nb_proxies,
|
|
const std::size_t num_iterations) {
|
|
if (m_proxies.size() < max_nb_proxies)
|
|
add_proxies_furthest(max_nb_proxies - m_proxies.size(), num_iterations);
|
|
|
|
return m_proxies.size();
|
|
}
|
|
|
|
/*!
|
|
* @brief Hierarchical initialize proxies to target number of proxies.
|
|
* @param max_nb_proxies maximum number of proxies,
|
|
* should be in range (nb_connected_components, num_faces(*m_ptm))
|
|
* @param num_iterations number of re-fitting iterations
|
|
* before each hierarchical proxy insertion
|
|
* @return number of proxies initialized
|
|
*/
|
|
std::size_t init_hierarchical(const std::size_t max_nb_proxies,
|
|
const std::size_t num_iterations) {
|
|
while (m_proxies.size() < max_nb_proxies) {
|
|
// try to double current number of proxies each time
|
|
std::size_t target_px = m_proxies.size();
|
|
if (target_px * 2 > max_nb_proxies)
|
|
target_px = max_nb_proxies;
|
|
else
|
|
target_px *= 2;
|
|
// add proxies by error diffusion
|
|
add_proxies_error_diffusion(target_px - m_proxies.size());
|
|
run(num_iterations);
|
|
}
|
|
|
|
return m_proxies.size();
|
|
}
|
|
|
|
/*!
|
|
* @brief Randomly initialize proxies
|
|
* with both maximum number of proxies and minimum error drop stop criteria,
|
|
* The first criterion met stops the seeding.
|
|
* @note To ensure the randomness, call `std::srand()` beforehand.
|
|
* @param max_nb_proxies maximum number of proxies, should be in range (nb_connected_components, num_faces(tm) / 3)
|
|
* @param min_error_drop minimum error drop, should be in range (0.0, 1.0)
|
|
* @param num_iterations number of re-fitting iterations
|
|
* @return number of proxies initialized
|
|
*/
|
|
std::size_t init_random_error(const std::size_t max_nb_proxies,
|
|
const FT min_error_drop,
|
|
const std::size_t num_iterations) {
|
|
|
|
const FT initial_err = compute_total_error();
|
|
FT error_drop = min_error_drop * FT(2.0);
|
|
while (m_proxies.size() < max_nb_proxies && error_drop > min_error_drop) {
|
|
// try to double current number of proxies each time
|
|
const std::size_t nb_px = m_proxies.size();
|
|
const std::size_t nb_to_add =
|
|
(nb_px * 2 > max_nb_proxies) ? max_nb_proxies - nb_px : nb_px;
|
|
|
|
// pick from current non seed facets randomly
|
|
std::vector<face_descriptor> picked_seeds;
|
|
if (!random_pick_non_seed_facets(nb_to_add, picked_seeds))
|
|
return m_proxies.size();
|
|
|
|
BOOST_FOREACH(face_descriptor f, picked_seeds)
|
|
add_one_proxy_at(f);
|
|
const FT err = run(num_iterations);
|
|
error_drop = err / initial_err;
|
|
}
|
|
|
|
return m_proxies.size();
|
|
}
|
|
|
|
/*!
|
|
* @brief Incrementally initialize proxies
|
|
* with both maximum number of proxies and minimum error drop stop criteria,
|
|
* The first criterion met stops the seeding.
|
|
* @param max_nb_proxies maximum number of proxies, should be in range (nb_connected_components, num_faces(tm) / 3)
|
|
* @param min_error_drop minimum error drop, should be in range (0.0, 1.0)
|
|
* @param num_iterations number of re-fitting iterations
|
|
* @return number of proxies initialized
|
|
*/
|
|
std::size_t init_incremental_error(const std::size_t max_nb_proxies,
|
|
const FT min_error_drop,
|
|
const std::size_t num_iterations) {
|
|
const FT initial_err = compute_total_error();
|
|
FT error_drop = min_error_drop * FT(2.0);
|
|
while (m_proxies.size() < max_nb_proxies && error_drop > min_error_drop) {
|
|
add_proxy_furthest();
|
|
const FT err = run(num_iterations);
|
|
error_drop = err / initial_err;
|
|
}
|
|
|
|
return m_proxies.size();
|
|
}
|
|
|
|
/*!
|
|
* @brief Hierarchically initialize proxies
|
|
* with both maximum number of proxies and minimum error drop stop criteria,
|
|
* The first criterion met stops the seeding.
|
|
* @param max_nb_proxies maximum number of proxies, should be in range (nb_connected_components, num_faces(tm) / 3)
|
|
* @param min_error_drop minimum error drop, should be in range (0.0, 1.0)
|
|
* @param num_iterations number of re-fitting iterations
|
|
* @return number of proxies initialized
|
|
*/
|
|
std::size_t init_hierarchical_error(const std::size_t max_nb_proxies,
|
|
const FT min_error_drop,
|
|
const std::size_t num_iterations) {
|
|
const FT initial_err = compute_total_error();
|
|
FT error_drop = min_error_drop * FT(2.0);
|
|
while (m_proxies.size() < max_nb_proxies && error_drop > min_error_drop) {
|
|
// try to double current number of proxies each time
|
|
std::size_t target_px = m_proxies.size();
|
|
if (target_px * 2 > max_nb_proxies)
|
|
target_px = max_nb_proxies;
|
|
else
|
|
target_px *= 2;
|
|
add_proxies_error_diffusion(target_px - m_proxies.size());
|
|
const FT err = run(num_iterations);
|
|
error_drop = err / initial_err;
|
|
}
|
|
|
|
return m_proxies.size();
|
|
}
|
|
|
|
/*!
|
|
* @brief Partition the area tagged with CGAL_VSA_INVALID_TAG with proxies, global facet proxy map is updated.
|
|
* Propagates the proxy seed facets and floods the tagged area to minimize the fitting error.
|
|
* @tparam ProxyWrapperIterator forward iterator with Proxy_wrapper as value type
|
|
* @param beg iterator point to the first element
|
|
* @param end iterator point to the one past the last element
|
|
*/
|
|
template<typename ProxyWrapperIterator>
|
|
void partition(const ProxyWrapperIterator beg, const ProxyWrapperIterator end) {
|
|
std::priority_queue<Facet_to_integrate> facet_pqueue;
|
|
for (ProxyWrapperIterator pxw_itr = beg; pxw_itr != end; ++pxw_itr) {
|
|
face_descriptor f = pxw_itr->seed;
|
|
put(m_fproxy_map, f, pxw_itr->idx);
|
|
|
|
BOOST_FOREACH(face_descriptor fadj, faces_around_face(halfedge(f, *m_ptm), *m_ptm)) {
|
|
if (fadj != boost::graph_traits<TriangleMesh>::null_face()
|
|
&& get(m_fproxy_map, fadj) == CGAL_VSA_INVALID_TAG) {
|
|
facet_pqueue.push(Facet_to_integrate(
|
|
fadj, pxw_itr->idx, (*m_perror_metric)(fadj, pxw_itr->px)));
|
|
}
|
|
}
|
|
}
|
|
|
|
while (!facet_pqueue.empty()) {
|
|
const Facet_to_integrate c = facet_pqueue.top();
|
|
facet_pqueue.pop();
|
|
if (get(m_fproxy_map, c.f) == CGAL_VSA_INVALID_TAG) {
|
|
put(m_fproxy_map, c.f, c.px);
|
|
BOOST_FOREACH(face_descriptor fadj, faces_around_face(halfedge(c.f, *m_ptm), *m_ptm)) {
|
|
if (fadj != boost::graph_traits<TriangleMesh>::null_face()
|
|
&& get(m_fproxy_map, fadj) == CGAL_VSA_INVALID_TAG) {
|
|
facet_pqueue.push(Facet_to_integrate(
|
|
fadj, c.px, (*m_perror_metric)(fadj, m_proxies[c.px].px)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* @brief Refitting and update input range of proxies, sequential.
|
|
* @tparam ProxyWrapperIterator forward iterator with Proxy_wrapper as value type
|
|
* @param beg iterator point to the first element
|
|
* @param end iterator point to the one past the last element
|
|
* @param t concurrency tag
|
|
*/
|
|
template<typename ProxyWrapperIterator>
|
|
void fit(const ProxyWrapperIterator beg, const ProxyWrapperIterator end, const CGAL::Sequential_tag &) {
|
|
std::vector<std::list<face_descriptor> > px_facets(m_proxies.size());
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm))
|
|
px_facets[get(m_fproxy_map, f)].push_back(f);
|
|
|
|
// update proxy parameters and seed
|
|
for (ProxyWrapperIterator pxw_itr = beg; pxw_itr != end; ++pxw_itr) {
|
|
const std::size_t px_idx = pxw_itr->idx;
|
|
*pxw_itr = fit_proxy_from_patch(px_facets[px_idx], px_idx);
|
|
}
|
|
}
|
|
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
/*!
|
|
* @brief Refitting and update input range of proxies, parallel.
|
|
* @tparam ProxyWrapperIterator forward iterator with Proxy_wrapper as value type
|
|
* @param beg iterator point to the first element
|
|
* @param end iterator point to the one past the last element
|
|
* @param t concurrency tag
|
|
*/
|
|
template<typename ProxyWrapperIterator>
|
|
void fit(const ProxyWrapperIterator beg, const ProxyWrapperIterator end, const CGAL::Parallel_tag &) {
|
|
std::vector<std::list<face_descriptor> > px_facets(m_proxies.size());
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm))
|
|
px_facets[get(m_fproxy_map, f)].push_back(f);
|
|
|
|
// update proxy parameters and seed
|
|
tbb::parallel_for(tbb::blocked_range<ProxyWrapperIterator>(beg, end),
|
|
[&](tbb::blocked_range<ProxyWrapperIterator> &r) {
|
|
for (ProxyWrapperIterator pxw_itr = r.begin(); pxw_itr != r.end(); ++pxw_itr) {
|
|
const std::size_t px_idx = pxw_itr->idx;
|
|
*pxw_itr = fit_proxy_from_patch(px_facets[px_idx], px_idx);
|
|
}
|
|
});
|
|
}
|
|
#endif // CGAL_LINKED_WITH_TBB
|
|
|
|
/*!
|
|
* @brief Add a proxy seed at the facet with the maximum fitting error.
|
|
* @return true add successfully, false otherwise
|
|
*/
|
|
bool add_proxy_furthest() {
|
|
#ifdef CGAL_SURFACE_MESH_APPROXIMATION_DEBUG
|
|
std::cerr << "add furthest " << m_proxies.size() << std::endl;
|
|
#endif
|
|
FT max_error = m_proxies.front().err;
|
|
std::size_t px_worst = 0;
|
|
for (std::size_t i = 0; i < m_proxies.size(); ++i) {
|
|
if (max_error < m_proxies[i].err) {
|
|
max_error = m_proxies[i].err;
|
|
px_worst = i;
|
|
}
|
|
}
|
|
|
|
face_descriptor fworst;
|
|
bool first = true;
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm)) {
|
|
std::size_t px_idx = get(m_fproxy_map, f);
|
|
if (px_idx != px_worst || f == m_proxies[px_idx].seed)
|
|
continue;
|
|
|
|
FT err = (*m_perror_metric)(f, m_proxies[px_idx].px);
|
|
if (first || max_error < err) {
|
|
first = false;
|
|
max_error = err;
|
|
fworst = f;
|
|
}
|
|
}
|
|
|
|
if (first)
|
|
return false;
|
|
|
|
add_one_proxy_at(fworst);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* @brief Fitting a new (wrapped) proxy from a region patch.
|
|
* 1. Compute proxy parameters from a list of facets.
|
|
* 2. Find proxy seed facet.
|
|
* 3. Sum the proxy error.
|
|
* @tparam FacetPatch container with `face_descriptor` as data type
|
|
* @param px_patch proxy patch container
|
|
* @param px_idx proxy index
|
|
* @return fitted wrapped proxy
|
|
*/
|
|
template<typename FacetPatch>
|
|
Proxy_wrapper fit_proxy_from_patch(const FacetPatch &px_patch, const std::size_t px_idx) {
|
|
CGAL_assertion(!px_patch.empty());
|
|
|
|
// use Proxy_fitting functor to fit proxy parameters
|
|
const Proxy px = (*m_pproxy_fitting)(px_patch.begin(), px_patch.end());
|
|
|
|
// find proxy seed and sum error
|
|
face_descriptor seed = *px_patch.begin();
|
|
FT err_min = (*m_perror_metric)(seed, px);
|
|
FT sum_error(0.0);
|
|
BOOST_FOREACH(face_descriptor f, px_patch) {
|
|
const FT err = (*m_perror_metric)(f, px);
|
|
sum_error += err;
|
|
if (err < err_min) {
|
|
err_min = err;
|
|
seed = f;
|
|
}
|
|
}
|
|
|
|
return Proxy_wrapper(px, px_idx, seed, sum_error);
|
|
}
|
|
|
|
/*!
|
|
* @brief Add a proxy at facet f
|
|
* @param f where to the proxy is initialized from
|
|
*/
|
|
void add_one_proxy_at(const face_descriptor f) {
|
|
m_proxies.push_back(fit_proxy_from_facet(f, m_proxies.size()));
|
|
}
|
|
|
|
/*!
|
|
* @brief Fitting a new (wrapped) proxy from a facet.
|
|
* 1. Compute proxy parameters from the facet.
|
|
* 2. Set seed to this facet.
|
|
* 3. Update the proxy error.
|
|
* 4. Update proxy map.
|
|
* @pre current facet proxy map is valid
|
|
* @param face_descriptor facet
|
|
* @param px_idx proxy index
|
|
* @return fitted wrapped proxy
|
|
*/
|
|
Proxy_wrapper fit_proxy_from_facet(const face_descriptor f, const std::size_t px_idx) {
|
|
// fit proxy parameters
|
|
std::vector<face_descriptor> fvec(1, f);
|
|
const Proxy px = (*m_pproxy_fitting)(fvec.begin(), fvec.end());
|
|
const FT err = (*m_perror_metric)(f, px);
|
|
|
|
// original proxy map should always be falid
|
|
const std::size_t prev_px_idx = get(m_fproxy_map, f);
|
|
CGAL_assertion(prev_px_idx != CGAL_VSA_INVALID_TAG);
|
|
// update the proxy error and proxy map
|
|
m_proxies[prev_px_idx].err -= (*m_perror_metric)(f, m_proxies[prev_px_idx].px);
|
|
put(m_fproxy_map, f, px_idx);
|
|
|
|
return Proxy_wrapper(px, px_idx, f, err);
|
|
}
|
|
|
|
/*!
|
|
* @brief Pick a number of non-seed facets into an empty vector randomly.
|
|
* @param nb_requested requested number of facets
|
|
* @param[out] facets shuffled facets vector
|
|
* @return true if requested number of facets are selected, false otherwise
|
|
*/
|
|
bool random_pick_non_seed_facets(const std::size_t nb_requested,
|
|
std::vector<face_descriptor> &facets) {
|
|
if (nb_requested + m_proxies.size() >= num_faces(*m_ptm))
|
|
return false;
|
|
|
|
std::set<face_descriptor> seed_facets_set;
|
|
BOOST_FOREACH(const Proxy_wrapper &pxw, m_proxies)
|
|
seed_facets_set.insert(pxw.seed);
|
|
|
|
const std::size_t nb_nsf = num_faces(*m_ptm) - m_proxies.size();
|
|
std::vector<face_descriptor> non_seed_facets;
|
|
non_seed_facets.reserve(nb_nsf);
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm)) {
|
|
if (seed_facets_set.find(f) != seed_facets_set.end())
|
|
continue;
|
|
non_seed_facets.push_back(f);
|
|
}
|
|
|
|
// random shuffle first few facets
|
|
for (std::size_t i = 0; i < nb_requested; ++i) {
|
|
// swap ith element with a random one
|
|
std::size_t r = static_cast<std::size_t>(
|
|
static_cast<double>(std::rand()) / static_cast<double>(RAND_MAX) *
|
|
static_cast<double>(nb_nsf - 1));
|
|
std::swap(non_seed_facets[i], non_seed_facets[r]);
|
|
}
|
|
|
|
for (std::size_t i = 0; i < nb_requested; ++i)
|
|
facets.push_back(non_seed_facets[i]);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* @brief Initialize proxies from each connected components of the surface.
|
|
* @note This function clears proxy vector and set facet proxy map to initial state,
|
|
* intended only for bootstrapping initialization.
|
|
* Coarse approximation iteration is not performed, because it's inaccurate anyway
|
|
* and may cause serious degenerate cases(e.g. a standard cube mode).
|
|
*/
|
|
void bootstrap_from_connected_components() {
|
|
// set all face invalid to mark as unvisited / untagged
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm))
|
|
put(m_fproxy_map, f, CGAL_VSA_INVALID_TAG);
|
|
|
|
// prepare for connected components visiting
|
|
std::vector<std::list<face_descriptor> > cc_patches;
|
|
bool if_all_visited = false;
|
|
std::size_t cc_idx = 0;
|
|
face_descriptor seed_facet = *(faces(*m_ptm).first);
|
|
while (!if_all_visited) {
|
|
// use current seed facet to traverse the conneceted componnets
|
|
std::list<face_descriptor> cc_patch;
|
|
cc_patch.push_back(seed_facet);
|
|
std::stack<face_descriptor> fstack;
|
|
fstack.push(seed_facet);
|
|
put(m_fproxy_map, seed_facet, cc_idx);
|
|
while (!fstack.empty()) {
|
|
face_descriptor active_facet = fstack.top();
|
|
fstack.pop();
|
|
BOOST_FOREACH(face_descriptor fadj,
|
|
faces_around_face(halfedge(active_facet, *m_ptm), *m_ptm)) {
|
|
if (fadj != boost::graph_traits<TriangleMesh>::null_face()
|
|
&& get(m_fproxy_map, fadj) == CGAL_VSA_INVALID_TAG) {
|
|
cc_patch.push_back(fadj);
|
|
fstack.push(fadj);
|
|
put(m_fproxy_map, fadj, cc_idx);
|
|
}
|
|
}
|
|
}
|
|
cc_patches.push_back(cc_patch);
|
|
// check if all visited
|
|
if_all_visited = true;
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm)) {
|
|
if (get(m_fproxy_map, f) == CGAL_VSA_INVALID_TAG) {
|
|
if_all_visited = false;
|
|
++cc_idx;
|
|
seed_facet = f;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
m_proxies.clear();
|
|
BOOST_FOREACH(const std::list<face_descriptor> &cc_patch, cc_patches)
|
|
m_proxies.push_back(fit_proxy_from_patch(cc_patch, m_proxies.size()));
|
|
#ifdef CGAL_SURFACE_MESH_APPROXIMATION_DEBUG
|
|
std::cerr << "#cc " << m_proxies.size() << std::endl;
|
|
#endif
|
|
}
|
|
|
|
/*!
|
|
* @brief Compute proxy planes.
|
|
* The proxy may not contain the plane related properties, so we need these internal planes,
|
|
* used in the chord subdivision and anchor location.
|
|
* @param if_pca_plane true to use the PCA plane fitting
|
|
*/
|
|
void compute_proxy_planes(const bool if_pca_plane) {
|
|
// fit proxy planes, areas, normals
|
|
std::vector<std::list<face_descriptor> > px_facets(m_proxies.size());
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm))
|
|
px_facets[get(m_fproxy_map, f)].push_back(f);
|
|
|
|
BOOST_FOREACH(const std::list<face_descriptor> &px_patch, px_facets) {
|
|
Plane_3 fit_plane = if_pca_plane ?
|
|
fit_plane_pca(px_patch.begin(), px_patch.end()) :
|
|
fit_plane_area_averaged(px_patch.begin(), px_patch.end());
|
|
|
|
Vector_3 norm = CGAL::NULL_VECTOR;
|
|
FT area(0.0);
|
|
BOOST_FOREACH(face_descriptor f, px_patch) {
|
|
halfedge_descriptor he = halfedge(f, *m_ptm);
|
|
const Point_3 &p0 = m_vpoint_map[source(he, *m_ptm)];
|
|
const Point_3 &p1 = m_vpoint_map[target(he, *m_ptm)];
|
|
const Point_3 &p2 = m_vpoint_map[target(next(he, *m_ptm), *m_ptm)];
|
|
const FT farea(std::sqrt(CGAL::to_double(CGAL::squared_area(p0, p1, p2))));
|
|
const Vector_3 fnorm = CGAL::unit_normal(p0, p1, p2);
|
|
|
|
norm = sum_functor(norm, scale_functor(fnorm, farea));
|
|
area += farea;
|
|
}
|
|
norm = scale_functor(norm, FT(1.0 / std::sqrt(CGAL::to_double(norm.squared_length()))));
|
|
|
|
m_px_planes.push_back(Proxy_plane(fit_plane, norm, area));
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* @brief Finds the anchors.
|
|
*/
|
|
void find_anchors() {
|
|
BOOST_FOREACH(vertex_descriptor vtx, vertices(*m_ptm)) {
|
|
std::size_t border_count = 0;
|
|
|
|
BOOST_FOREACH(halfedge_descriptor h, halfedges_around_target(vtx, *m_ptm)) {
|
|
if (CGAL::is_border_edge(h, *m_ptm))
|
|
++border_count;
|
|
else if (get(m_fproxy_map, face(h, *m_ptm)) != get(m_fproxy_map, face(opposite(h, *m_ptm), *m_ptm)))
|
|
++border_count;
|
|
}
|
|
if (border_count >= 3)
|
|
attach_anchor(vtx);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* @brief Finds and approximates the chord connecting the anchors.
|
|
* @param chord_error boundary chord approximation recursive split creterion
|
|
* @param is_relative_to_chord true if the chord_error is relative to the the chord length (relative sense),
|
|
* otherwise it's relative to the average edge length (absolute sense).
|
|
* @param with_dihedral_angle true if add dihedral angle weight to the distance, false otherwise
|
|
*/
|
|
void find_edges(const FT chord_error,
|
|
const bool is_relative_to_chord,
|
|
const bool with_dihedral_angle) {
|
|
// collect candidate halfedges in a set
|
|
std::set<halfedge_descriptor> he_candidates;
|
|
BOOST_FOREACH(halfedge_descriptor h, halfedges(*m_ptm)) {
|
|
if (!CGAL::is_border(h, *m_ptm)
|
|
&& (CGAL::is_border(opposite(h, *m_ptm), *m_ptm)
|
|
|| get(m_fproxy_map, face(h, *m_ptm)) != get(m_fproxy_map, face(opposite(h, *m_ptm), *m_ptm))))
|
|
he_candidates.insert(h);
|
|
}
|
|
|
|
// pick up one candidate halfedge each time and traverse the connected boundary cycle
|
|
while (!he_candidates.empty()) {
|
|
halfedge_descriptor he_start = *he_candidates.begin();
|
|
walk_to_first_anchor(he_start);
|
|
// no anchor in this connected boundary cycle, make a new anchor
|
|
if (!is_anchor_attached(he_start))
|
|
attach_anchor(he_start);
|
|
|
|
// a new connected boundary cycle
|
|
m_bcycles.push_back(Boundary_cycle(he_start));
|
|
|
|
#ifdef CGAL_SURFACE_MESH_APPROXIMATION_DEBUG
|
|
std::cerr << "#bcycle " << m_bcycles.size() << std::endl;
|
|
#endif
|
|
|
|
const halfedge_descriptor he_mark = he_start;
|
|
do {
|
|
Boundary_chord chord;
|
|
walk_to_next_anchor(he_start, chord);
|
|
m_bcycles.back().num_anchors += subdivide_chord(chord.begin(), chord.end(),
|
|
chord_error, is_relative_to_chord, with_dihedral_angle);
|
|
|
|
#ifdef CGAL_SURFACE_MESH_APPROXIMATION_DEBUG
|
|
std::cerr << "#chord_anchor " << m_bcycles.back().num_anchors << std::endl;
|
|
#endif
|
|
|
|
BOOST_FOREACH(const halfedge_descriptor &he, chord)
|
|
he_candidates.erase(he);
|
|
} while (he_start != he_mark);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* @brief Adds anchors to the boundary cycles with only 2 anchors.
|
|
*/
|
|
void add_anchors() {
|
|
BOOST_FOREACH(const Boundary_cycle &bcycle, m_bcycles) {
|
|
if (bcycle.num_anchors > 2)
|
|
continue;
|
|
|
|
// 2 initial anchors at least
|
|
CGAL_assertion(bcycle.num_anchors == 2);
|
|
// borders with only 2 initial anchors
|
|
Point_3 pt_begin = m_vpoint_map[target(bcycle.he_head, *m_ptm)];
|
|
Point_3 pt_end = pt_begin;
|
|
|
|
halfedge_descriptor he = bcycle.he_head;
|
|
Boundary_chord chord;
|
|
std::size_t count = 0;
|
|
do {
|
|
walk_to_next_border_halfedge(he);
|
|
if (!is_anchor_attached(he))
|
|
chord.push_back(he);
|
|
else {
|
|
if (count == 0)
|
|
pt_end = m_vpoint_map[target(he, *m_ptm)];
|
|
++count;
|
|
}
|
|
} while (he != bcycle.he_head);
|
|
|
|
// anchor count may be increased to more than 2 afterwards
|
|
// due to the new anchors added by the neighboring boundary cycle (< 2 anchors)
|
|
if (count > 2) {
|
|
const_cast<Boundary_cycle &>(bcycle).num_anchors = count;
|
|
continue;
|
|
}
|
|
|
|
FT dist_max(0.0);
|
|
halfedge_descriptor he_max;
|
|
Vector_3 chord_vec = vector_functor(pt_begin, pt_end);
|
|
chord_vec = scale_functor(chord_vec,
|
|
FT(1.0 / std::sqrt(CGAL::to_double(chord_vec.squared_length()))));
|
|
BOOST_FOREACH(const halfedge_descriptor &he, chord) {
|
|
Vector_3 vec = vector_functor(pt_begin, m_vpoint_map[target(he, *m_ptm)]);
|
|
vec = CGAL::cross_product(chord_vec, vec);
|
|
FT dist(std::sqrt(CGAL::to_double(vec.squared_length())));
|
|
if (dist > dist_max) {
|
|
dist_max = dist;
|
|
he_max = he;
|
|
}
|
|
}
|
|
// add one anchors to this boundary cycle
|
|
attach_anchor(he_max);
|
|
const_cast<Boundary_cycle &>(bcycle).num_anchors++;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* @brief Runs the pseudo Constrained Delaunay Triangulation at each proxy region,
|
|
* and stores the extracted indexed triangles in @a tris.
|
|
* @pre all anchors are found, i.e. all boundary cycles have been visited
|
|
* and attached with at least 3 anchors.
|
|
*/
|
|
void pseudo_cdt() {
|
|
// subgraph attached with vertex anchor status and edge weight
|
|
typedef boost::property<boost::vertex_index1_t, std::size_t,
|
|
boost::property<boost::vertex_index2_t, std::size_t> > VertexProperty;
|
|
typedef boost::property<boost::edge_weight_t, FT,
|
|
boost::property<boost::edge_index_t, std::size_t> > EdgeProperty;
|
|
typedef boost::subgraph<boost::adjacency_list<
|
|
boost::listS, boost::vecS,
|
|
boost::undirectedS,
|
|
VertexProperty, EdgeProperty> > SubGraph;
|
|
typedef typename boost::property_map<SubGraph, boost::vertex_index1_t>::type VertexIndex1Map;
|
|
typedef typename boost::property_map<SubGraph, boost::vertex_index2_t>::type VertexIndex2Map;
|
|
typedef typename boost::property_map<SubGraph, boost::edge_weight_t>::type EdgeWeightMap;
|
|
typedef typename SubGraph::vertex_descriptor sg_vertex_descriptor;
|
|
typedef std::vector<sg_vertex_descriptor> VertexVector;
|
|
|
|
typedef boost::unordered_map<vertex_descriptor, sg_vertex_descriptor> VertexMap;
|
|
typedef boost::associative_property_map<VertexMap> ToSGVertexMap;
|
|
VertexMap vmap;
|
|
ToSGVertexMap to_sgv_map(vmap);
|
|
|
|
// mapping the TriangleMesh mesh into a SubGraph
|
|
SubGraph gmain;
|
|
VertexIndex1Map global_vanchor_map = get(boost::vertex_index1, gmain);
|
|
VertexIndex2Map global_vtag_map = get(boost::vertex_index2, gmain);
|
|
EdgeWeightMap global_eweight_map = get(boost::edge_weight, gmain);
|
|
BOOST_FOREACH(vertex_descriptor v, vertices(*m_ptm)) {
|
|
sg_vertex_descriptor sgv = add_vertex(gmain);
|
|
global_vanchor_map[sgv] = get(m_vanchor_map, v);
|
|
global_vtag_map[sgv] = get(m_vanchor_map, v);
|
|
vmap.insert(std::pair<vertex_descriptor, sg_vertex_descriptor>(v, sgv));
|
|
}
|
|
BOOST_FOREACH(edge_descriptor e, edges(*m_ptm)) {
|
|
vertex_descriptor vs = source(e, *m_ptm);
|
|
vertex_descriptor vt = target(e, *m_ptm);
|
|
FT len(std::sqrt(CGAL::to_double(
|
|
CGAL::squared_distance(m_vpoint_map[vs], m_vpoint_map[vt]))));
|
|
add_edge(to_sgv_map[vs], to_sgv_map[vt], len, gmain);
|
|
}
|
|
|
|
std::vector<VertexVector> vertex_patches(m_proxies.size());
|
|
BOOST_FOREACH(vertex_descriptor v, vertices(*m_ptm)) {
|
|
std::set<std::size_t> px_set;
|
|
BOOST_FOREACH(face_descriptor f, faces_around_target(halfedge(v, *m_ptm), *m_ptm)) {
|
|
if (f != boost::graph_traits<TriangleMesh>::null_face())
|
|
px_set.insert(get(m_fproxy_map, f));
|
|
}
|
|
BOOST_FOREACH(std::size_t p, px_set)
|
|
vertex_patches[p].push_back(to_sgv_map[v]);
|
|
}
|
|
BOOST_FOREACH(VertexVector &vpatch, vertex_patches) {
|
|
// add a super vertex connecting to its boundary anchors in each patch
|
|
const sg_vertex_descriptor superv = add_vertex(gmain);
|
|
global_vanchor_map[superv] = CGAL_VSA_INVALID_TAG;
|
|
global_vtag_map[superv] = CGAL_VSA_INVALID_TAG;
|
|
BOOST_FOREACH(sg_vertex_descriptor v, vpatch) {
|
|
if (is_anchor_attached(v, global_vanchor_map))
|
|
add_edge(superv, v, FT(0.0), gmain);
|
|
}
|
|
vpatch.push_back(superv);
|
|
}
|
|
|
|
// multi-source Dijkstra's shortest path algorithm applied to each proxy patch
|
|
BOOST_FOREACH(VertexVector &vpatch, vertex_patches) {
|
|
// construct subgraph
|
|
SubGraph &glocal = gmain.create_subgraph();
|
|
BOOST_FOREACH(sg_vertex_descriptor v, vpatch)
|
|
add_vertex(v, glocal);
|
|
|
|
// most subgraph functions work with local descriptors
|
|
VertexIndex1Map local_vanchor_map = get(boost::vertex_index1, glocal);
|
|
VertexIndex2Map local_vtag_map = get(boost::vertex_index2, glocal);
|
|
EdgeWeightMap local_eweight_map = get(boost::edge_weight, glocal);
|
|
|
|
const sg_vertex_descriptor source = glocal.global_to_local(vpatch.back());
|
|
VertexVector pred(num_vertices(glocal));
|
|
boost::dijkstra_shortest_paths(glocal, source,
|
|
boost::predecessor_map(&pred[0]).weight_map(local_eweight_map));
|
|
|
|
// backtrack to the anchor and tag each vertex in the local patch graph
|
|
BOOST_FOREACH(sg_vertex_descriptor v, vertices(glocal)) {
|
|
// skip the added super source vertex in the patch
|
|
if (v == source)
|
|
continue;
|
|
sg_vertex_descriptor curr = v;
|
|
while (!is_anchor_attached(curr, local_vanchor_map))
|
|
curr = pred[curr];
|
|
local_vtag_map[v] = local_vanchor_map[curr];
|
|
}
|
|
}
|
|
|
|
// tag all boundary chords
|
|
BOOST_FOREACH(const Boundary_cycle &bcycle, m_bcycles) {
|
|
halfedge_descriptor he = bcycle.he_head;
|
|
do {
|
|
Boundary_chord chord;
|
|
walk_to_next_anchor(he, chord);
|
|
|
|
std::vector<FT> vdist;
|
|
vdist.push_back(FT(0.0));
|
|
BOOST_FOREACH(halfedge_descriptor h, chord) {
|
|
FT elen = global_eweight_map[edge(
|
|
to_sgv_map[source(h, *m_ptm)],
|
|
to_sgv_map[target(h, *m_ptm)],
|
|
gmain).first];
|
|
vdist.push_back(vdist.back() + elen);
|
|
}
|
|
|
|
FT half_chord_len = vdist.back() / FT(2.0);
|
|
const std::size_t anchorleft = get(m_vanchor_map, source(chord.front(), *m_ptm));
|
|
const std::size_t anchorright = get(m_vanchor_map, target(chord.back(), *m_ptm));
|
|
typename std::vector<FT>::iterator ditr = vdist.begin() + 1;
|
|
for (Boundary_chord_iterator citr = chord.begin(); citr != chord.end() - 1; ++citr, ++ditr) {
|
|
if (*ditr < half_chord_len)
|
|
global_vtag_map[to_sgv_map[target(*citr, *m_ptm)]] = anchorleft;
|
|
else
|
|
global_vtag_map[to_sgv_map[target(*citr, *m_ptm)]] = anchorright;
|
|
}
|
|
} while (he != bcycle.he_head);
|
|
}
|
|
|
|
// collect triangles
|
|
BOOST_FOREACH(face_descriptor f, faces(*m_ptm)) {
|
|
halfedge_descriptor he = halfedge(f, *m_ptm);
|
|
std::size_t i = global_vtag_map[to_sgv_map[source(he, *m_ptm)]];
|
|
std::size_t j = global_vtag_map[to_sgv_map[target(he, *m_ptm)]];
|
|
std::size_t k = global_vtag_map[to_sgv_map[target(next(he, *m_ptm), *m_ptm)]];
|
|
if (i != j && i != k && j != k) {
|
|
std::vector<std::size_t> t;
|
|
t.push_back(i);
|
|
t.push_back(j);
|
|
t.push_back(k);
|
|
m_tris.push_back(t);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* @brief Walks along the region boundary cycle to the first halfedge
|
|
* pointing to a vertex associated with an anchor.
|
|
* @param[in/out] he_start region boundary halfedge
|
|
*/
|
|
void walk_to_first_anchor(halfedge_descriptor &he_start) {
|
|
const halfedge_descriptor start_mark = he_start;
|
|
while (!is_anchor_attached(he_start)) {
|
|
// no anchor attached to the halfedge target
|
|
walk_to_next_border_halfedge(he_start);
|
|
if (he_start == start_mark) // back to where started, a boundary cycle without anchor
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* @brief Walks along the region boundary cycle to the next anchor
|
|
* and records the path as a `Boundary_chord`.
|
|
* @param[in/out] he_start starting region boundary halfedge
|
|
* pointing to a vertex associated with an anchor
|
|
* @param[out] chord recorded path chord
|
|
*/
|
|
void walk_to_next_anchor(halfedge_descriptor &he_start, Boundary_chord &chord) const {
|
|
do {
|
|
walk_to_next_border_halfedge(he_start);
|
|
chord.push_back(he_start);
|
|
} while (!is_anchor_attached(he_start));
|
|
}
|
|
|
|
/*!
|
|
* @brief Walks to the next boundary cycle halfedge.
|
|
* @param[in/out] he_start region boundary halfedge
|
|
*/
|
|
void walk_to_next_border_halfedge(halfedge_descriptor &he_start) const {
|
|
const std::size_t px_idx = get(m_fproxy_map, face(he_start, *m_ptm));
|
|
BOOST_FOREACH(halfedge_descriptor h, halfedges_around_target(he_start, *m_ptm)) {
|
|
if (CGAL::is_border(h, *m_ptm) || get(m_fproxy_map, face(h, *m_ptm)) != px_idx) {
|
|
he_start = opposite(h, *m_ptm);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* @brief Subdivides a chord recursively in range [@a chord_begin, @a chord_end).
|
|
* @param chord_begin begin iterator of the chord
|
|
* @param chord_end end iterator of the chord
|
|
* @param chord_error the chord recursive split error threshold
|
|
* @param is_relative_to_chord true if the chord_error is relative to the the chord length (relative sense),
|
|
* otherwise it's relative to the average edge length (absolute sense).
|
|
* @param with_dihedral_angle true if add dihedral angle weight to the distance, false otherwise
|
|
* @return the number of anchors of the chord apart from the first one
|
|
*/
|
|
std::size_t subdivide_chord(
|
|
const Boundary_chord_iterator &chord_begin,
|
|
const Boundary_chord_iterator &chord_end,
|
|
const FT chord_error,
|
|
const bool is_relative_to_chord,
|
|
const bool with_dihedral_angle) {
|
|
const std::size_t chord_size = std::distance(chord_begin, chord_end);
|
|
const halfedge_descriptor he_first = *chord_begin;
|
|
const halfedge_descriptor he_last = *(chord_end - 1);
|
|
const std::size_t anchor_first = get(m_vanchor_map, source(he_first, *m_ptm));
|
|
const std::size_t anchor_last = get(m_vanchor_map, target(he_last, *m_ptm));
|
|
|
|
// do not subdivide trivial non-circular chord
|
|
if ((anchor_first != anchor_last) && (chord_size < 4))
|
|
return 1;
|
|
|
|
bool if_subdivide = false;
|
|
Boundary_chord_iterator chord_max;
|
|
const Point_3 &pt_begin = m_vpoint_map[source(he_first, *m_ptm)];
|
|
const Point_3 &pt_end = m_vpoint_map[target(he_last, *m_ptm)];
|
|
if (anchor_first == anchor_last) {
|
|
// circular chord
|
|
CGAL_assertion(chord_size > 2);
|
|
|
|
FT dist_max(0.0);
|
|
for (Boundary_chord_iterator citr = chord_begin; citr != chord_end; ++citr) {
|
|
FT dist = CGAL::squared_distance(pt_begin, m_vpoint_map[target(*citr, *m_ptm)]);
|
|
dist = FT(std::sqrt(CGAL::to_double(dist)));
|
|
if (dist > dist_max) {
|
|
chord_max = citr;
|
|
dist_max = dist;
|
|
}
|
|
}
|
|
|
|
if_subdivide = true;
|
|
}
|
|
else {
|
|
FT dist_max(0.0);
|
|
Vector_3 chord_vec = vector_functor(pt_begin, pt_end);
|
|
FT chord_len(std::sqrt(CGAL::to_double(chord_vec.squared_length())));
|
|
chord_vec = scale_functor(chord_vec, FT(1.0) / chord_len);
|
|
|
|
for (Boundary_chord_iterator citr = chord_begin; citr != chord_end; ++citr) {
|
|
Vector_3 vec = vector_functor(pt_begin, m_vpoint_map[target(*citr, *m_ptm)]);
|
|
vec = CGAL::cross_product(chord_vec, vec);
|
|
FT dist(std::sqrt(CGAL::to_double(vec.squared_length())));
|
|
if (dist > dist_max) {
|
|
chord_max = citr;
|
|
dist_max = dist;
|
|
}
|
|
}
|
|
|
|
FT criterion = dist_max;
|
|
if (is_relative_to_chord)
|
|
criterion /= chord_len;
|
|
else
|
|
criterion /= m_average_edge_length;
|
|
|
|
if (with_dihedral_angle) {
|
|
// suppose the proxy normal angle is acute
|
|
std::size_t px_left = get(m_fproxy_map, face(he_first, *m_ptm));
|
|
std::size_t px_right = px_left;
|
|
if (!CGAL::is_border(opposite(he_first, *m_ptm), *m_ptm))
|
|
px_right = get(m_fproxy_map, face(opposite(he_first, *m_ptm), *m_ptm));
|
|
FT norm_sin(1.0);
|
|
if (!CGAL::is_border(opposite(he_first, *m_ptm), *m_ptm)) {
|
|
Vector_3 vec = CGAL::cross_product(
|
|
m_px_planes[px_left].normal, m_px_planes[px_right].normal);
|
|
norm_sin = FT(std::sqrt(CGAL::to_double(scalar_product_functor(vec, vec))));
|
|
}
|
|
criterion *= norm_sin;
|
|
}
|
|
|
|
if (criterion > chord_error)
|
|
if_subdivide = true;
|
|
}
|
|
|
|
if (if_subdivide) {
|
|
// subdivide at the most remote vertex
|
|
attach_anchor(*chord_max);
|
|
|
|
const std::size_t num_left = subdivide_chord(chord_begin, chord_max + 1,
|
|
chord_error, is_relative_to_chord, with_dihedral_angle);
|
|
const std::size_t num_right = subdivide_chord(chord_max + 1, chord_end,
|
|
chord_error, is_relative_to_chord, with_dihedral_angle);
|
|
|
|
return num_left + num_right;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*!
|
|
* @brief Return true if the target vertex of a halfedge is attached with an anchor, and false otherwise.
|
|
* @param he a halfedge descriptor
|
|
*/
|
|
bool is_anchor_attached(const halfedge_descriptor &he) const {
|
|
return is_anchor_attached(target(he, *m_ptm), m_vanchor_map);
|
|
}
|
|
|
|
/*!
|
|
* @brief Check if a vertex is attached with an anchor.
|
|
* @tparam VertexAnchorIndexMap `WritablePropertyMap`
|
|
* with `boost::graph_traights<TriangleMesh>::vertex_descriptor` as key and `std::size_t` as value type
|
|
* @param vtx a vertex descriptor
|
|
* @param vanchor_map vertex anchor index map
|
|
*/
|
|
template<typename VertexAnchorIndexMap>
|
|
bool is_anchor_attached(
|
|
const typename boost::property_traits<VertexAnchorIndexMap>::key_type &vtx,
|
|
const VertexAnchorIndexMap &vanchor_map) const {
|
|
return get(vanchor_map, vtx) != CGAL_VSA_INVALID_TAG;
|
|
}
|
|
|
|
/*!
|
|
* @brief Attachs an anchor to the vertex.
|
|
* @param vtx vertex
|
|
*/
|
|
void attach_anchor(const vertex_descriptor &vtx) {
|
|
put(m_vanchor_map, vtx, m_anchors.size());
|
|
// default anchor location is the vertex point
|
|
m_anchors.push_back(Anchor(vtx, m_vpoint_map[vtx]));
|
|
}
|
|
|
|
/*!
|
|
* @brief Attachs an anchor to the target vertex of the halfedge.
|
|
* @param he halfedge
|
|
*/
|
|
void attach_anchor(const halfedge_descriptor &he) {
|
|
attach_anchor(target(he, *m_ptm));
|
|
}
|
|
|
|
/*!
|
|
* @brief Optimize the anchor location by averaging the projection points of
|
|
* the anchor vertex to the incident proxy plane.
|
|
*/
|
|
void optimize_anchor_location() {
|
|
BOOST_FOREACH(Anchor &a, m_anchors) {
|
|
const vertex_descriptor v = a.vtx;
|
|
// incident proxy set
|
|
std::set<std::size_t> px_set;
|
|
BOOST_FOREACH(halfedge_descriptor h, halfedges_around_target(v, *m_ptm)) {
|
|
if (!CGAL::is_border(h, *m_ptm))
|
|
px_set.insert(get(m_fproxy_map, face(h, *m_ptm)));
|
|
}
|
|
|
|
// projection
|
|
FT sum_area(0.0);
|
|
Vector_3 vec = vector_functor(CGAL::ORIGIN, point_functor(CGAL::ORIGIN));
|
|
const Point_3 vtx_pt = m_vpoint_map[v];
|
|
BOOST_FOREACH(const std::size_t px_idx, px_set) {
|
|
const Vector_3 proj = vector_functor(
|
|
CGAL::ORIGIN, m_px_planes[px_idx].plane.projection(vtx_pt));
|
|
const FT area = m_px_planes[px_idx].area;
|
|
vec = sum_functor(vec, scale_functor(proj, area));
|
|
sum_area += area;
|
|
}
|
|
vec = scale_functor(vec, FT(1.0) / sum_area);
|
|
|
|
a.pos = translate_point_functor(CGAL::ORIGIN, vec);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* @brief Calculate the averaged edge length of a triangle mesh.
|
|
* @param tm the input triangle mesh
|
|
* @param vpoint_map vertex point map
|
|
* @return averaged edge length
|
|
*/
|
|
FT compute_averaged_edge_length(const TriangleMesh &tm, const VertexPointMap &vpoint_map) const {
|
|
// compute average edge length
|
|
FT sum(0.0);
|
|
BOOST_FOREACH(edge_descriptor e, edges(tm)) {
|
|
const vertex_descriptor vs = source(e, tm);
|
|
const vertex_descriptor vt = target(e, tm);
|
|
sum += FT(std::sqrt(CGAL::to_double(
|
|
CGAL::squared_distance(vpoint_map[vs], vpoint_map[vt]))));
|
|
}
|
|
return sum / num_edges(tm);
|
|
}
|
|
|
|
/*!
|
|
* @brief Use an incremental builder to build and test if the indexed triangle surface is manifold
|
|
* @tparam PolyhedronSurface should be `CGAL::Polyhedron_3`
|
|
* @param[out] poly input polyhedorn mesh
|
|
* @return true if build manifold surface successfully
|
|
*/
|
|
template <typename PolyhedronSurface>
|
|
bool build_polyhedron_surface(PolyhedronSurface &poly) {
|
|
std::vector<Point_3> vtx;
|
|
BOOST_FOREACH(const Anchor &a, m_anchors)
|
|
vtx.push_back(a.pos);
|
|
|
|
typedef typename PolyhedronSurface::HalfedgeDS HDS;
|
|
Triangle_polyhedron_builder<HDS> tpbuilder(vtx, m_tris);
|
|
poly.delegate(tpbuilder);
|
|
|
|
return tpbuilder.is_manifold;
|
|
}
|
|
|
|
/*!
|
|
* @brief Fit an area averaged plane from a range of facets.
|
|
* @tparam FacetIterator face_descriptor container iterator
|
|
* @param beg container begin
|
|
* @param end container end
|
|
* @return fitted plane
|
|
*/
|
|
template <typename FacetIterator>
|
|
Plane_3 fit_plane_area_averaged(const FacetIterator &beg, const FacetIterator &end) {
|
|
CGAL_assertion(beg != end);
|
|
// area average normal and centroid
|
|
Vector_3 norm = CGAL::NULL_VECTOR;
|
|
Vector_3 cent = CGAL::NULL_VECTOR;
|
|
FT sum_area(0.0);
|
|
for (FacetIterator fitr = beg; fitr != end; ++fitr) {
|
|
const halfedge_descriptor he = halfedge(*fitr, *m_ptm);
|
|
const Point_3 &p0 = m_vpoint_map[source(he, *m_ptm)];
|
|
const Point_3 &p1 = m_vpoint_map[target(he, *m_ptm)];
|
|
const Point_3 &p2 = m_vpoint_map[target(next(he, *m_ptm), *m_ptm)];
|
|
|
|
Vector_3 vec = vector_functor(CGAL::ORIGIN, CGAL::centroid(p0, p1, p2));
|
|
FT farea(std::sqrt(CGAL::to_double(CGAL::squared_area(p0, p1, p2))));
|
|
Vector_3 fnorm = CGAL::unit_normal(p0, p1, p2);
|
|
|
|
norm = sum_functor(norm, scale_functor(fnorm, farea));
|
|
cent = sum_functor(cent, scale_functor(vec, farea));
|
|
sum_area += farea;
|
|
}
|
|
norm = scale_functor(norm,
|
|
FT(1.0 / std::sqrt(CGAL::to_double(norm.squared_length()))));
|
|
cent = scale_functor(cent, FT(1.0) / sum_area);
|
|
|
|
return Plane_3(CGAL::ORIGIN + cent, norm);
|
|
}
|
|
|
|
/*!
|
|
* @brief Fit a plane from a range of facets with PCA algorithm.
|
|
* @tparam FacetIterator face_descriptor container iterator
|
|
* @param beg container begin
|
|
* @param end container end
|
|
* @return fitted plane
|
|
*/
|
|
template <typename FacetIterator>
|
|
Plane_3 fit_plane_pca(const FacetIterator &beg, const FacetIterator &end) {
|
|
CGAL_assertion(beg != end);
|
|
|
|
typedef typename Geom_traits::Triangle_3 Triangle_3;
|
|
std::list<Triangle_3> tri_list;
|
|
for (FacetIterator fitr = beg; fitr != end; ++fitr) {
|
|
halfedge_descriptor he = halfedge(*fitr, *m_ptm);
|
|
const Point_3 &p0 = m_vpoint_map[source(he, *m_ptm)];
|
|
const Point_3 &p1 = m_vpoint_map[target(he, *m_ptm)];
|
|
const Point_3 &p2 = m_vpoint_map[target(next(he, *m_ptm), *m_ptm)];
|
|
tri_list.push_back(Triangle_3(p0, p1, p2));
|
|
}
|
|
|
|
// construct and fit proxy plane
|
|
Plane_3 fit_plane;
|
|
CGAL::linear_least_squares_fitting_3(
|
|
tri_list.begin(),
|
|
tri_list.end(),
|
|
fit_plane,
|
|
CGAL::Dimension_tag<2>());
|
|
|
|
return fit_plane;
|
|
}
|
|
};
|
|
|
|
} // end namespace VSA
|
|
} // end namespace CGAL
|
|
|
|
#undef CGAL_VSA_INVALID_TAG
|
|
|
|
#endif // CGAL_SURFACE_MESH_APPROXIMATION_VSA_APPROXIMATION_H
|