cgal/Old_Packages/Stl_port/stlport/stl_deque.h

1304 lines
42 KiB
C++

/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Copyright (c) 1997
* Moscow Center for SPARC Technology
*
* Copyright (c) 1999
* Boris Fomitchev
*
* This material is provided "as is", with absolutely no warranty expressed
* or implied. Any use is at your own risk.
*
* Permission to use or copy this software for any purpose is hereby granted
* without fee, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_DEQUE_H
#define __SGI_STL_INTERNAL_DEQUE_H
# ifndef __SGI_STL_INTERNAL_ALGOBASE_H
# include <stl_algobase.h>
# endif
# ifndef __SGI_STL_INTERNAL_ALLOC_H
# include <stl_alloc.h>
# endif
# ifndef __SGI_STL_INTERNAL_ITERATOR_H
# include <stl_iterator.h>
# endif
# ifndef __SGI_STL_INTERNAL_UNINITIALIZED_H
# include <stl_uninitialized.h>
# endif
# ifndef __STL_RANGE_ERRORS_H
# include <stl_range_errors.h>
# endif
/* Class invariants:
* For any nonsingular iterator i:
* i.node is the address of an element in the map array. The
* contents of i.node is a pointer to the beginning of a node.
* i.first == *(i.node)
* i.last == i.first + node_size
* i.cur is a pointer in the range [i.first, i.last). NOTE:
* the implication of this is that i.cur is always a dereferenceable
* pointer, even if i is a past-the-end iterator.
* Start and Finish are always nonsingular iterators. NOTE: this means
* that an empty deque must have one node, and that a deque
* with N elements, where N is the buffer size, must have two nodes.
* For every node other than start.node and finish.node, every element
* in the node is an initialized object. If start.node == finish.node,
* then [start.cur, finish.cur) are initialized objects, and
* the elements outside that range are uninitialized storage. Otherwise,
* [start.cur, start.last) and [finish.first, finish.cur) are initialized
* objects, and [start.first, start.cur) and [finish.cur, finish.last)
* are uninitialized storage.
* [map, map + map_size) is a valid, non-empty range.
* [start.node, finish.node] is a valid range contained within
* [map, map + map_size).
* A pointer in the range [map, map + map_size) points to an allocated node
* if and only if the pointer is in the range [start.node, finish.node].
*/
/*
* In previous versions of deque, node_size was fixed by the
* implementation. In this version, however, users can select
* the node size. Deque has three template parameters; the third,
* a number of type size_t, is the number of elements per node.
* If the third template parameter is 0 (which is the default),
* then deque will use a default node size.
*
* The only reason for using an alternate node size is if your application
* requires a different performance tradeoff than the default. If,
* for example, your program contains many deques each of which contains
* only a few elements, then you might want to save memory (possibly
* by sacrificing some speed) by using smaller nodes.
*
* Unfortunately, some compilers have trouble with non-type template
* parameters; stl_config.h defines __STL_NON_TYPE_TMPL_PARAM_BUG if
* that is the case. If your compiler is one of them, then you will
* not be able to use alternate node sizes; you will have to use the
* default value.
*/
# undef __deque__
# undef deque
# if defined ( __STL_NO_DEFAULT_NON_TYPE_PARAM )
# define deque __deque
# define __deque__ __deque
# else
# define __deque__ __FULL_NAME(deque)
# define deque __WORKAROUND_RENAME(deque)
# endif
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#pragma set woff 1375
#endif
# if defined ( __STL_USE_ABBREVS )
# define __deque_iterator _dQ__It
# define _Buf_traits _dQ__BTr
# define _Deque_iterator _Dq__It
# endif
// Note: this function is simply a kludge to work around several compilers'
// bugs in handling constant expressions.
inline size_t
__deque_buf_size(size_t __n, size_t size)
{
return __n != 0 ? __n : (size < 512 ? size_t(512 / size) : size_t(1));
}
// this helper class is needed to pass deque not-type parameter
// to its iterators.
template <class _Tp, size_t _BufSize>
struct _Buf_size_traits {
public:
enum _Constants {
_blocksize = 512,
_buf_size = (_BufSize != 0 ? _BufSize : (sizeof(_Tp) < (size_t)_blocksize ?
( (size_t)_blocksize / sizeof(_Tp)) : size_t(1))),
_byte_buf_size = sizeof(_Tp)*_buf_size
};
static size_t buffer_size() { return (size_t)_buf_size; }
};
# ifdef __STL_DEBUG
template <class _Tp>
bool __Deq_dereferenceable(const void* __ptr, _Tp*);
template <class _Tp>
bool __Deq_nonsingular(const void* __ptr, _Tp*);
# endif
template <class _Tp, class __bufsiz>
# if defined ( __STL_DEBUG )
struct _Deque_iterator_base : public __owned_link {
# else
struct _Deque_iterator_base {
# endif
enum { __buffer_size = __bufsiz::_buf_size } ;
typedef random_access_iterator_tag iterator_category;
typedef _Tp value_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef value_type** _Map_pointer;
typedef _Deque_iterator_base< _Tp, __bufsiz> _Self;
value_type* _M_cur;
value_type* _M_first;
value_type* _M_last;
_Map_pointer _M_node;
# if defined ( __STL_DEBUG )
bool _M_unsafe;
_Deque_iterator_base(const __owned_list* __root, value_type* __x, _Map_pointer __y)
: __owned_link(__root),_M_cur(__x), _M_first(*__y), _M_last(*__y + __buffer_size),
_M_node(__y), _M_unsafe(false) {}
_Deque_iterator_base() : __owned_link(0), _M_cur(0), _M_first(0), _M_last(0),
_M_node(0), _M_unsafe(false) {}
# else
_Deque_iterator_base(value_type* __x, _Map_pointer __y)
: _M_cur(__x), _M_first(*__y),
_M_last(*__y + __buffer_size), _M_node(__y) {}
_Deque_iterator_base() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
# endif
difference_type _M_subtract(const _Self& __x) const {
__stl_debug_check(__check_same_owner(*this,__x));
return difference_type(__buffer_size) * (_M_node - __x._M_node - 1) +
(_M_cur - _M_first) + (__x._M_last - __x._M_cur);
}
void _M_increment() {
// ++_M_cur;
if (++_M_cur == _M_last) {
_M_set_node(_M_node + 1);
_M_cur = _M_first;
}
__stl_debug_check(__Deq_nonsingular(this,(value_type*)0));
}
void _M_decrement() {
if (_M_cur == _M_first) {
_M_set_node(_M_node - 1);
_M_cur = _M_last;
}
--_M_cur;
__stl_debug_check(__Deq_nonsingular(this,(value_type*)0));
}
void _M_advance(difference_type __n)
{
difference_type __offset = __n + (_M_cur - _M_first);
if (__offset >= 0 && __offset < difference_type(__buffer_size))
_M_cur += __n;
else {
difference_type __node_offset =
__offset > 0 ? __offset / __buffer_size
: -difference_type((-__offset - 1) / __buffer_size) - 1;
_M_set_node(_M_node + __node_offset);
_M_cur = _M_first +
(__offset - __node_offset * difference_type(__buffer_size));
}
__stl_debug_check(__Deq_nonsingular(this,(_Tp*)0));
}
void _M_set_node(_Map_pointer __new_node) {
_M_last = (_M_first = *(_M_node = __new_node)) + difference_type(__buffer_size);
}
};
template <class _Tp, class _Traits, class __bufsiz>
struct _Deque_iterator : public _Deque_iterator_base< _Tp, __bufsiz> {
typedef random_access_iterator_tag iterator_category;
typedef _Tp value_type;
typedef typename _Traits::reference reference;
typedef typename _Traits::pointer pointer;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef value_type** _Map_pointer;
typedef _Deque_iterator_base< _Tp, __bufsiz> _Base;
typedef _Deque_iterator<_Tp, _Traits, __bufsiz> _Self;
typedef _Deque_iterator<_Tp, _Nonconst_traits<_Tp>,__bufsiz> _Nonconst_self;
typedef _Deque_iterator<_Tp, _Const_traits<_Tp>,__bufsiz> _Const_self;
# ifdef __STL_HAS_NAMESPACES
__STL_USING_BASE_MEMBER _Base::_M_cur;
__STL_USING_BASE_MEMBER _Base::_M_first;
__STL_USING_BASE_MEMBER _Base::_M_last;
__STL_USING_BASE_MEMBER _Base::_M_node;
# endif
# if defined ( __STL_DEBUG )
# ifdef __STL_HAS_NAMESPACES
__STL_USING_BASE_MEMBER _Base::_M_unsafe;
# endif
_Deque_iterator(const __owned_list* __root, value_type* __x, _Map_pointer __y):
_Deque_iterator_base<value_type, __bufsiz>(__root,__x,__y) {}
# else /* __STL_DEBUG */
_Deque_iterator(value_type* __x, _Map_pointer __y) :
_Deque_iterator_base<value_type, __bufsiz>(__x,__y) {}
# endif
_Deque_iterator() {}
_Deque_iterator(const _Nonconst_self& __x) :
_Deque_iterator_base<value_type, __bufsiz>(__x) {}
reference operator*() const {
__stl_debug_check(__Deq_dereferenceable((const void*)this, (value_type*)0));
return *_M_cur;
}
__STL_DEFINE_ARROW_OPERATOR
difference_type operator-(const _Self& __x) const { return _M_subtract(__x); }
_Self& operator++() { _M_increment(); return *this; }
_Self operator++(int) {
_Self __tmp = *this;
++*this;
return __tmp;
}
_Self& operator--() { _M_decrement(); return *this; }
_Self operator--(int) {
_Self __tmp = *this;
--*this;
return __tmp;
}
_Self& operator+=(difference_type __n) { _M_advance(__n); return *this; }
_Self operator+(difference_type __n) const
{
_Self __tmp = *this;
return __tmp += __n;
}
_Self& operator-=(difference_type __n) { return *this += -__n; }
_Self operator-(difference_type __n) const {
_Self __tmp = *this;
return __tmp -= __n;
}
reference operator[](difference_type __n) const { return *(*this + __n); }
};
template <class _Tp, class _Traits, class __bufsiz>
inline _Deque_iterator<_Tp, _Traits, __bufsiz>
operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Traits, __bufsiz>& __x)
{
return __x + __n;
}
#ifdef __STL_USE_SEPARATE_RELOPS_NAMESPACE
template <class _Tp, class __bufsiz>
inline bool
operator==(const _Deque_iterator_base<_Tp,__bufsiz>& __x,
const _Deque_iterator_base<_Tp,__bufsiz>& __y) {
__stl_debug_check(__check_same_owner_or_null(__x, __y));
return __x._M_cur == __y._M_cur;
}
template <class _Tp, class __bufsiz>
inline bool
operator < (const _Deque_iterator_base<_Tp,__bufsiz>& __x,
const _Deque_iterator_base<_Tp,__bufsiz>& __y) {
__stl_debug_check(__check_same_owner(__x, __y));
return (__x._M_node == __y._M_node) ?
(__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node);
}
template <class _Tp, class __bufsiz>
inline bool
operator!=(const _Deque_iterator_base<_Tp,__bufsiz>& __x,
const _Deque_iterator_base<_Tp,__bufsiz>& __y) {
__stl_debug_check(__check_same_owner_or_null(__x, __y));
return __x._M_cur != __y._M_cur;
}
template <class _Tp, class __bufsiz>
inline bool
operator>(const _Deque_iterator_base<_Tp,__bufsiz>& __x,
const _Deque_iterator_base<_Tp,__bufsiz>& __y) {
return __y < __x;
}
template <class _Tp, class __bufsiz>
inline bool operator>=(const _Deque_iterator_base<_Tp,__bufsiz>& __x,
const _Deque_iterator_base<_Tp,__bufsiz>& __y) {
return !(__x < __y);
}
template <class _Tp, class __bufsiz>
inline bool operator<=(const _Deque_iterator_base<_Tp,__bufsiz>& __x,
const _Deque_iterator_base<_Tp,__bufsiz>& __y) {
return !(__y < __x);
}
# else
template <class _Tp, class _Traits1, class _Traits2, class __bufsiz>
inline bool
operator==(const _Deque_iterator<_Tp, _Traits1,__bufsiz>& __x,
const _Deque_iterator<_Tp, _Traits2,__bufsiz>& __y) {
__stl_debug_check(__check_same_owner_or_null(__x, __y));
return __x._M_cur == __y._M_cur;
}
template <class _Tp, class _Traits1, class _Traits2, class __bufsiz>
inline bool
operator < (const _Deque_iterator<_Tp, _Traits1,__bufsiz>& __x,
const _Deque_iterator<_Tp, _Traits2,__bufsiz>& __y) {
__stl_debug_check(__check_same_owner(__x, __y));
return (__x._M_node == __y._M_node) ?
(__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node);
}
template <class _Tp, class __bufsiz>
inline bool
operator!=(const _Deque_iterator<_Tp, _Nonconst_traits<_Tp>,__bufsiz>& __x,
const _Deque_iterator<_Tp, _Const_traits<_Tp>,__bufsiz>& __y) {
__stl_debug_check(__check_same_owner_or_null(__x, __y));
return __x._M_cur != __y._M_cur;
}
template <class _Tp, class __bufsiz>
inline bool
operator>(const _Deque_iterator<_Tp, _Nonconst_traits<_Tp>,__bufsiz>& __x,
const _Deque_iterator<_Tp, _Const_traits<_Tp>, __bufsiz>& __y) {
return __y < __x;
}
template <class _Tp, class __bufsiz>
inline bool operator>=(const _Deque_iterator<_Tp, _Nonconst_traits<_Tp>,__bufsiz>& __x,
const _Deque_iterator<_Tp, _Const_traits<_Tp>, __bufsiz>& __y) {
return !(__x < __y);
}
template <class _Tp, class __bufsiz>
inline bool operator<=(const _Deque_iterator<_Tp, _Nonconst_traits<_Tp>,__bufsiz>& __x,
const _Deque_iterator<_Tp, _Const_traits<_Tp>, __bufsiz>& __y) {
return !(__y < __x);
}
# endif
#ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
template <class _Tp, class _Traits, class __bufsiz>
inline _Tp*
value_type(const _Deque_iterator<_Tp, _Traits,__bufsiz>&) {
return (_Tp*)0;
}
template <class _Tp, class _Traits, class __bufsiz>
inline random_access_iterator_tag
iterator_category(const _Deque_iterator<_Tp, _Traits,__bufsiz>&) {
return random_access_iterator_tag();
}
template <class _Tp, class _Traits, class __bufsiz>
inline ptrdiff_t*
distance_type(const _Deque_iterator<_Tp, _Traits,__bufsiz>&) {
return 0;
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
// Deque base class. It has two purposes. First, its constructor
// and destructor allocate (but don't initialize) storage. This makes
// exception safety easier. Second, the base class encapsulates all of
// the differences between SGI-style allocators and standard-conforming
// allocators.
template <class _Tp, class _Alloc, size_t __bufsiz>
class _Deque_base {
public:
typedef _Tp value_type;
typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
typedef typename _Alloc_traits<_Tp*, _Alloc>::allocator_type _Map_alloc_type;
typedef _Buf_size_traits <_Tp, __bufsiz > __buf_traits;
typedef _Deque_iterator<_Tp, _Nonconst_traits<_Tp>,__buf_traits> iterator;
typedef _Deque_iterator<_Tp, _Const_traits<_Tp>, __buf_traits> const_iterator;
_Deque_base(const allocator_type& __a, size_t __num_elements)
: _M_start(), _M_finish(), _M_map(__STL_CONVERT_ALLOCATOR(__a, _Tp*), (_Tp**)0),
_M_map_size(__a, (size_t)0) {
_M_initialize_map(__num_elements);
}
_Deque_base(const allocator_type& __a)
: _M_start(), _M_finish(), _M_map(__STL_CONVERT_ALLOCATOR(__a, _Tp*), (_Tp**)0),
_M_map_size(__a, (size_t)0) {
}
~_Deque_base();
allocator_type get_allocator() const { return _M_map_size; }
protected:
void _M_initialize_map(size_t);
void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
enum { _S_initial_map_size = 8 };
protected:
iterator _M_start;
iterator _M_finish;
_STL_alloc_proxy<value_type**, value_type*, _Map_alloc_type> _M_map;
_STL_alloc_proxy<size_t, value_type, allocator_type> _M_map_size;
};
// See __deque_buf_size(). The only reason that the default value is 0
// is as a workaround for bugs in the way that some compilers handle
// constant expressions.
# if defined ( __STL_NO_DEFAULT_NON_TYPE_PARAM )
template <class _Tp, class _Alloc, size_t __bufsiz>
# else
template <class _Tp, __STL_DEFAULT_ALLOCATOR_SELECT(_Tp),
__DFL_NON_TYPE_PARAM(size_t, __bufsiz, 0)>
# endif
class deque : protected _Deque_base<_Tp, _Alloc, __bufsiz> {
typedef _Deque_base<_Tp, _Alloc, __bufsiz> _Base;
typedef deque<_Tp, _Alloc, __bufsiz> _Self;
public: // Basic types
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef typename _Base::allocator_type allocator_type;
public: // Iterators
typedef typename _Base::iterator iterator;
typedef typename _Base::const_iterator const_iterator;
#if (defined ( __STL_CLASS_PARTIAL_SPECIALIZATION ) && \
! defined (__STL_PARTIAL_SPECIALIZATION_BUG)) || \
defined (CGAL_LIMITED_ITERATOR_TRAITS_SUPPORT)
typedef __STLPORT_STD::reverse_iterator<const_iterator> const_reverse_iterator;
typedef __STLPORT_STD::reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
# if defined (__STL_MSVC50_COMPATIBILITY)
typedef __STLPORT_STD::reverse_iterator<const_iterator, value_type, const_reference,
const value_type*, difference_type> const_reverse_iterator;
typedef __STLPORT_STD::reverse_iterator<iterator, value_type, reference, pointer,
difference_type> reverse_iterator;
# else
typedef __STLPORT_STD::reverse_iterator<const_iterator, value_type, const_reference,
difference_type>
const_reverse_iterator;
typedef __STLPORT_STD::reverse_iterator<iterator, value_type, reference, difference_type>
reverse_iterator;
# endif /* __STL_MSVC50_COMPATIBILITY */
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
protected: // Internal typedefs
typedef pointer* _Map_pointer;
typedef _Buf_size_traits < _Tp, __bufsiz > __buf_traits;
protected:
#if defined( __STL_HAS_NAMESPACES )
__STL_USING_BASE_MEMBER _Deque_base<_Tp, _Alloc, __bufsiz>::_M_initialize_map;
__STL_USING_BASE_MEMBER _Deque_base<_Tp, _Alloc, __bufsiz>::_M_create_nodes;
# ifndef __STL_DEBUG
__STL_USING_BASE_MEMBER _Deque_base<_Tp, _Alloc, __bufsiz>::_M_destroy_nodes;
# endif
__STL_USING_BASE_MEMBER _Deque_base<_Tp, _Alloc, __bufsiz>::_M_map;
__STL_USING_BASE_MEMBER _Deque_base<_Tp, _Alloc, __bufsiz>::_M_map_size;
__STL_USING_BASE_MEMBER _Deque_base<_Tp, _Alloc, __bufsiz>::_M_start;
__STL_USING_BASE_MEMBER _Deque_base<_Tp, _Alloc, __bufsiz>::_M_finish;
#endif /* __STL_HAS_NAMESPACES */
# if defined (__STL_DEBUG)
protected:
__owned_list _M_iter_list;
void _Init_bounds() {
_M_orphan_start();
_M_orphan_finish();
}
void _Invalidate_iterator(const iterator& __it) {
__invalidate_iterator(&_M_iter_list,__it);
}
void _Invalidate_all() {
_M_iter_list._Invalidate_all();
}
void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish) {
_Base::_M_destroy_nodes(__nstart, __nfinish);
// to simplify unwind handling
_M_finish._M_unsafe= false;
_M_start._M_unsafe = false;
}
void _M_orphan_start() {
_M_iter_list._Orphan(_M_start);
_M_start._M_unsafe = false;
}
void _M_orphan_finish() {
_M_iter_list._Orphan(_M_finish);
_M_finish._M_unsafe= false;
}
# endif
public: // Basic accessors
iterator begin() { return _M_start; }
iterator end() { return _M_finish; }
const_iterator begin() const { return *(const const_iterator*)&_M_start; }
const_iterator end() const { return *(const const_iterator*)&_M_finish; }
reverse_iterator rbegin() { return reverse_iterator(_M_finish); }
reverse_iterator rend() { return reverse_iterator(_M_start); }
const_reverse_iterator rbegin() const
{ return const_reverse_iterator(_M_finish); }
const_reverse_iterator rend() const
{ return const_reverse_iterator(_M_start); }
reference operator[](size_type __n)
{ return _M_start[difference_type(__n)]; }
const_reference operator[](size_type __n) const
{ return _M_start[difference_type(__n)]; }
#ifdef __STL_THROW_RANGE_ERRORS
void _M_range_check(size_type __n) const {
if (__n >= this->size())
__stl_throw_range_error("deque");
}
reference at(size_type __n)
{ _M_range_check(__n); return (*this)[__n]; }
const_reference at(size_type __n) const
{ _M_range_check(__n); return (*this)[__n]; }
#endif /* __STL_THROW_RANGE_ERRORS */
reference front() { return *_M_start; }
reference back() {
iterator __tmp = _M_finish;
--__tmp;
return *__tmp;
}
const_reference front() const { return *_M_start; }
const_reference back() const {
const_iterator __tmp = _M_finish;
--__tmp;
return *__tmp;
}
size_type size() const { return _M_finish - _M_start; }
size_type max_size() const { return size_type(-1); }
bool empty() const { return _M_finish == _M_start; }
public: // Constructor, destructor.
explicit deque(const allocator_type& __a = __STL_ALLOC_INSTANCE(allocator_type))
: _Deque_base<_Tp, _Alloc, __bufsiz>(__a, 0) {
__stl_debug_do(_M_iter_list._Safe_init(&_M_start));
__stl_debug_do(_Init_bounds());
}
deque(const _Self& __x) :
_Deque_base<_Tp, _Alloc, __bufsiz>(__x.get_allocator(), __x.size())
{
__stl_debug_do(_M_iter_list._Safe_init(&_M_start));
__stl_debug_do(_Init_bounds());
uninitialized_copy(__x.begin(), __x.end(), _M_start);
}
deque(size_type __n, const value_type& __value,
const allocator_type& __a = __STL_ALLOC_INSTANCE(allocator_type)) :
_Deque_base<_Tp, _Alloc, __bufsiz>(__a, __n)
{ _M_fill_initialize(__value); }
// int,long variants may be needed
explicit deque(size_type __n) : _Deque_base<_Tp, _Alloc, __bufsiz>(allocator_type(), __n)
{ _M_fill_initialize(value_type()); }
#ifdef __STL_MEMBER_TEMPLATES
// Check whether it's an integral type. If so, it's not an iterator.
template <class _InputIterator>
deque(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = __STL_ALLOC_INSTANCE(allocator_type)) :
_Deque_base<_Tp, _Alloc, __bufsiz>(__a) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_initialize_dispatch(__first, __last, _Integral());
}
template <class _Integer>
void _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) {
_M_initialize_map(__n);
_M_fill_initialize(__x);
}
template <class _InputIter>
void _M_initialize_dispatch(_InputIter __first, _InputIter __last,
__false_type) {
_M_range_initialize(__first, __last, __ITERATOR_CATEGORY(__first));
}
#else /* __STL_MEMBER_TEMPLATES */
deque(const value_type* __first, const value_type* __last,
const allocator_type& __a = __STL_ALLOC_INSTANCE(allocator_type))
: _Deque_base<_Tp, _Alloc, __bufsiz>(__a, __last - __first)
{
__stl_debug_do(_M_iter_list._Safe_init(&_M_start));
__stl_debug_do(_Init_bounds());
uninitialized_copy(__first, __last, _M_start);
}
deque(const_iterator __first, const_iterator __last,
const allocator_type& __a = __STL_ALLOC_INSTANCE(allocator_type))
: _Deque_base<_Tp, _Alloc, __bufsiz>(__a, __last - __first)
{
__stl_debug_do(_M_iter_list._Safe_init(&_M_start));
__stl_debug_do(_Init_bounds());
uninitialized_copy(__first, __last, _M_start);
}
#endif /* __STL_MEMBER_TEMPLATES */
~deque() {
destroy(_M_start, _M_finish);
}
_Self& operator= (const _Self& __x);
void swap(_Self& __x) {
__STLPORT_STD::swap(_M_start, __x._M_start);
__STLPORT_STD::swap(_M_finish, __x._M_finish);
__STLPORT_STD::swap(_M_map, __x._M_map);
__STLPORT_STD::swap(_M_map_size, __x._M_map_size);
__stl_debug_do(_M_iter_list._Swap_owners(__x._M_iter_list));
}
public:
// assign(), a generalized assignment member function. Two
// versions: one that takes a count, and one that takes a range.
// The range version is a member template, so we dispatch on whether
// or not the type is an integer.
void _M_fill_assign(size_type __n, const _Tp& __val) {
if (__n > size()) {
fill(begin(), end(), __val);
insert(end(), __n - size(), __val);
}
else {
erase(begin() + __n, end());
fill(begin(), end(), __val);
}
}
void assign(size_type __n, const _Tp& __val) {
_M_fill_assign(__n, __val);
}
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
void assign(_InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
private: // helper functions for assign()
template <class _Integer>
void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_type) __n, (_Tp) __val); }
template <class _InputIterator>
void _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type) {
_M_assign_aux(__first, __last, __ITERATOR_CATEGORY(__first));
}
template <class _InputIter>
void _M_assign_aux(_InputIter __first, _InputIter __last, input_iterator_tag) {
iterator __cur = begin();
for ( ; __first != __last && __cur != end(); ++__cur, ++__first)
*__cur = *__first;
if (__first == __last)
erase(__cur, end());
else
insert(end(), __first, __last);
}
template <class _ForwardIterator>
void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag) {
size_type __len = 0;
distance(__first, __last, __len);
if (__len > size()) {
_ForwardIterator __mid = __first;
advance(__mid, size());
copy(__first, __mid, begin());
insert(end(), __mid, __last);
}
else
erase(copy(__first, __last, begin()), end());
}
#endif /* __STL_MEMBER_TEMPLATES */
public: // push_* and pop_*
void push_back(const value_type& __t) {
if (_M_finish._M_cur != _M_finish._M_last - 1) {
construct(_M_finish._M_cur, __t);
++_M_finish._M_cur;
}
else
_M_push_back_aux(__t);
__stl_debug_do(_Invalidate_all());
}
void push_back() {
if (_M_finish._M_cur != _M_finish._M_last - 1) {
construct(_M_finish._M_cur);
++_M_finish._M_cur;
}
else
_M_push_back_aux();
__stl_debug_do(_Invalidate_all());
}
void push_front(const value_type& __t) {
if (_M_start._M_cur != _M_start._M_first) {
construct(_M_start._M_cur - 1, __t);
--_M_start._M_cur;
}
else
_M_push_front_aux(__t);
__stl_debug_do(_Invalidate_all());
}
void push_front() {
if (_M_start._M_cur != _M_start._M_first) {
construct(_M_start._M_cur - 1);
--_M_start._M_cur;
}
else
_M_push_front_aux();
__stl_debug_do(_Invalidate_all());
}
void pop_back() {
__stl_debug_do(_Invalidate_iterator(_M_finish));
if (_M_finish._M_cur != _M_finish._M_first) {
--_M_finish._M_cur;
destroy(_M_finish._M_cur);
}
else
_M_pop_back_aux();
}
void pop_front() {
__stl_debug_do(_Invalidate_iterator(_M_start));
if (_M_start._M_cur != _M_start._M_last - 1) {
destroy(_M_start._M_cur);
++_M_start._M_cur;
}
else
_M_pop_front_aux();
}
public: // Insert
iterator insert(iterator __position, const value_type& __x) {
__stl_debug_check(__check_if_owner(&_M_iter_list, __position));
if (__position._M_cur == _M_start._M_cur) {
push_front(__x);
return _M_start;
}
else if (__position._M_cur == _M_finish._M_cur) {
push_back(__x);
iterator __tmp = _M_finish;
--__tmp;
return __tmp;
}
else {
return _M_insert_aux(__position, __x);
}
}
iterator insert(iterator __position)
{ return insert(__position, value_type()); }
void insert(iterator __pos, size_type __n, const value_type& __x) {
_M_fill_insert(__pos, __n, __x);
}
void _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
#ifdef __STL_MEMBER_TEMPLATES
// Check whether it's an integral type. If so, it's not an iterator.
template <class _InputIterator>
void insert(iterator __pos, _InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__pos, __first, __last, _Integral());
}
template <class _Integer>
void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x,
__true_type) {
_M_fill_insert(__pos, (size_type) __n, (value_type) __x);
}
template <class _InputIterator>
void _M_insert_dispatch(iterator __pos,
_InputIterator __first, _InputIterator __last,
__false_type) {
insert(__pos, __first, __last, __ITERATOR_CATEGORY(__first));
}
#else /* __STL_MEMBER_TEMPLATES */
void insert(iterator __pos,
const value_type* __first, const value_type* __last);
void insert(iterator __pos,
const_iterator __first, const_iterator __last);
#endif /* __STL_MEMBER_TEMPLATES */
void resize(size_type __new_size, const value_type& __x) {
const size_type __len = size();
if (__new_size < __len)
erase(_M_start + __new_size, _M_finish);
else
insert(_M_finish, __new_size - __len, __x);
}
void resize(size_type new_size) { resize(new_size, value_type()); }
public: // Erase
iterator erase(iterator __pos) {
__stl_debug_check(__check_if_owner(&_M_iter_list, __pos) && (__pos != end()));
iterator __next = __pos;
++__next;
difference_type __index = __pos - _M_start;
if (__index < difference_type(size() >> 1)) {
copy_backward(_M_start, __pos, __next);
pop_front();
}
else {
copy(__next, _M_finish, __pos);
pop_back();
}
return _M_start + __index;
}
iterator erase(iterator __first, iterator __last);
void clear();
protected: // Internal construction/destruction
void _M_fill_initialize(const value_type& __value);
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
void _M_range_initialize(_InputIterator __first,
_InputIterator __last,
input_iterator_tag)
#ifndef __STL_INLINE_MEMBER_TEMPLATES
;
#else
{
_M_initialize_map(0);
__stl_debug_do(_M_iter_list._Safe_init(&_M_start));
__stl_debug_do(_Init_bounds());
__STL_TRY {
for ( ; __first != __last; ++__first)
push_back(*__first);
}
__STL_UNWIND(clear());
}
# endif /* __STL_OUTLINE_MEMBER_TEMPLATES */
template <class _ForwardIterator>
void _M_range_initialize(_ForwardIterator __first,
_ForwardIterator __last,
forward_iterator_tag)
# ifndef __STL_INLINE_MEMBER_TEMPLATES
;
# else
{
size_type __n = 0;
distance(__first, __last, __n);
__stl_debug_do(_M_iter_list._Safe_init(&_M_start));
__stl_debug_do(_Init_bounds());
_M_initialize_map(__n);
_Map_pointer __cur_node;
__STL_TRY {
for (__cur_node = _M_start._M_node;
__cur_node < _M_finish._M_node;
++__cur_node) {
_ForwardIterator __mid = __first;
advance(__mid, __buf_traits::_buf_size);
uninitialized_copy(__first, __mid, *__cur_node);
__first = __mid;
}
uninitialized_copy(__first, __last, _M_finish._M_first);
}
# ifdef __STL_DEBUG
__STL_UNWIND(destroy(_M_start, iterator(&_M_iter_list, *__cur_node, __cur_node)));
# else
__STL_UNWIND(destroy(_M_start, iterator(*__cur_node, __cur_node)));
# endif
}
# endif /* __STL_INLINE_MEMBER_TEMPLATES */
#endif /* __STL_MEMBER_TEMPLATES */
protected: // Internal push_* and pop_*
void _M_push_back_aux(const value_type&);
void _M_push_back_aux();
void _M_push_front_aux(const value_type&);
void _M_push_front_aux();
void _M_pop_back_aux();
void _M_pop_front_aux();
protected: // Internal insert functions
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
void
insert(iterator __pos,
_InputIterator __first,
_InputIterator __last,
input_iterator_tag)
{
__stl_debug_check(__check_if_owner(&_M_iter_list, __pos) &&
__check_range(__first,__last));
copy(__first, __last, inserter(*this, __pos));
}
template <class _ForwardIterator>
void insert(iterator __pos,
_ForwardIterator __first,
_ForwardIterator __last,
forward_iterator_tag)
# ifndef __STL_INLINE_MEMBER_TEMPLATES
;
# else
{
__stl_debug_check(__check_if_owner(&_M_iter_list, __pos));
size_type __n = 0;
distance(__first, __last, __n);
if (__pos._M_cur == _M_start._M_cur) {
iterator __new_start = _M_reserve_elements_at_front(__n);
__STL_TRY {
uninitialized_copy(__first, __last, __new_start);
_M_start = __new_start;
__stl_debug_do(_M_orphan_start());
}
__STL_UNWIND(_M_destroy_nodes(__new_start._M_node, _M_start._M_node));
}
else if (__pos._M_cur == _M_finish._M_cur) {
iterator __new_finish = _M_reserve_elements_at_back(__n);
__STL_TRY {
uninitialized_copy(__first, __last, _M_finish);
_M_finish = __new_finish;
__stl_debug_do(_M_orphan_finish());
}
__STL_UNWIND(_M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1));
}
else
_M_insert_aux(__pos, __first, __last, __n);
}
# endif /* __STL_INLINE_MEMBER_TEMPLATES */
#endif /* __STL_MEMBER_TEMPLATES */
iterator _M_insert_aux(iterator __pos, const value_type& __x);
iterator _M_insert_aux(iterator __pos);
iterator _M_insert_aux_prepare(iterator __pos);
void _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
#ifdef __STL_MEMBER_TEMPLATES
template <class _ForwardIterator>
void _M_insert_aux(iterator __pos,
_ForwardIterator __first,
_ForwardIterator __last,
size_type __n)
# ifndef __STL_INLINE_MEMBER_TEMPLATES
;
# else
{
const difference_type __elemsbefore = __pos - _M_start;
size_type __length = size();
if (__elemsbefore < difference_type(__length / 2)) {
iterator __new_start = _M_reserve_elements_at_front(__n);
iterator __old_start = _M_start;
__pos = _M_start + __elemsbefore;
__STL_TRY {
if (__elemsbefore >= difference_type(__n)) {
iterator __start_n = _M_start + difference_type(__n);
uninitialized_copy(_M_start, __start_n, __new_start);
_M_start = __new_start;
__stl_debug_do(_M_orphan_start());
copy(__start_n, __pos, __old_start);
copy(__first, __last, __pos - difference_type(__n));
}
else {
_ForwardIterator __mid = __first;
advance(__mid, difference_type(__n) - __elemsbefore);
__uninitialized_copy_copy(_M_start, __pos, __first, __mid,
__new_start);
_M_start = __new_start;
__stl_debug_do(_M_orphan_start());
copy(__mid, __last, __old_start);
}
}
__STL_UNWIND(_M_destroy_nodes(__new_start._M_node, _M_start._M_node));
}
else {
iterator __new_finish = _M_reserve_elements_at_back(__n);
iterator __old_finish = _M_finish;
const difference_type __elemsafter =
difference_type(__length) - __elemsbefore;
__pos = _M_finish - __elemsafter;
__STL_TRY {
if (__elemsafter > difference_type(__n)) {
iterator __finish_n = _M_finish - difference_type(__n);
uninitialized_copy(__finish_n, _M_finish, _M_finish);
_M_finish = __new_finish;
__stl_debug_do(_M_orphan_finish());
copy_backward(__pos, __finish_n, __old_finish);
copy(__first, __last, __pos);
}
else {
_ForwardIterator __mid = __first;
advance(__mid, __elemsafter);
__uninitialized_copy_copy(__mid, __last, __pos, _M_finish, _M_finish);
_M_finish = __new_finish;
__stl_debug_do(_M_orphan_finish());
copy(__first, __mid, __pos);
}
}
__STL_UNWIND(_M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1));
}
__stl_debug_do(_Invalidate_all());
}
# endif /* __STL_INLINE_MEMBER_TEMPLATES */
#else /* __STL_MEMBER_TEMPLATES */
void _M_insert_aux(iterator __pos,
const value_type* __first, const value_type* __last,
size_type __n);
void _M_insert_aux(iterator __pos,
const_iterator __first, const_iterator __last,
size_type __n);
#endif /* __STL_MEMBER_TEMPLATES */
iterator _M_reserve_elements_at_front(size_type __n) {
size_type __vacancies = _M_start._M_cur - _M_start._M_first;
if (__n > __vacancies)
_M_new_elements_at_front(__n - __vacancies);
__stl_debug_do(_M_start._M_unsafe=true);
return _M_start - difference_type(__n);
}
iterator _M_reserve_elements_at_back(size_type __n) {
size_type __vacancies = (_M_finish._M_last - _M_finish._M_cur) - 1;
if (__n > __vacancies)
_M_new_elements_at_back(__n - __vacancies);
__stl_debug_do(_M_finish._M_unsafe=true);
return _M_finish + difference_type(__n);
}
void _M_new_elements_at_front(size_type __new_elements);
void _M_new_elements_at_back(size_type __new_elements);
protected: // Allocation of _M_map and nodes
// Makes sure the _M_map has space for new nodes. Does not actually
// add the nodes. Can invalidate _M_map pointers. (And consequently,
// deque iterators.)
void _M_reserve_map_at_back (size_type __nodes_to_add = 1) {
if (__nodes_to_add + 1 > _M_map_size._M_data - (_M_finish._M_node - _M_map._M_data))
_M_reallocate_map(__nodes_to_add, false);
}
void _M_reserve_map_at_front (size_type __nodes_to_add = 1) {
if (__nodes_to_add > size_type(_M_start._M_node - _M_map._M_data))
_M_reallocate_map(__nodes_to_add, true);
}
void _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
#ifdef __STL_NON_TYPE_TMPL_PARAM_BUG
public:
bool operator==(const deque<_Tp,_Alloc,__bufsiz>& __x) const {
return size() == __x.size() && equal(begin(), end(), __x.begin());
}
bool operator!=(const deque<_Tp,_Alloc,__bufsiz>& __x) const {
return size() != __x.size() || !equal(begin(), end(), __x.begin());
}
bool operator<(const deque<_Tp,_Alloc,__bufsiz>& __x) const {
return lexicographical_compare(begin(), end(), __x.begin(), __x.end());
}
bool operator>(const deque<_Tp,_Alloc,__bufsiz>& __x) const {
return __x < *this;
}
bool operator<=(const deque<_Tp,_Alloc,__bufsiz>& __x) const {
return !(__x < *this);
}
bool operator>=(const deque<_Tp,_Alloc,__bufsiz>& __x) const {
return !(*this < __x);
}
# endif /* __STL_NON_TYPE_TMPL_PARAM_BUG */
};
// Nonmember functions.
#ifndef __STL_NON_TYPE_TMPL_PARAM_BUG
template <class _Tp, class _Alloc, size_t __bufsiz>
inline bool operator==(const deque<_Tp, _Alloc, __bufsiz>& __x,
const deque<_Tp, _Alloc, __bufsiz>& __y)
{
return __x.size() == __y.size() &&
equal(__x.begin(), __x.end(), __y.begin());
}
template <class _Tp, class _Alloc, size_t __bufsiz>
inline bool operator<(const deque<_Tp, _Alloc, __bufsiz>& __x,
const deque<_Tp, _Alloc, __bufsiz>& __y)
{
return lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
#if defined(__STL_USE_SEPARATE_RELOPS_NAMESPACE)
template <class _Tp, class _Alloc, size_t __bufsiz>
inline bool operator>(const deque<_Tp, _Alloc, __bufsiz>& __x,
const deque<_Tp, _Alloc, __bufsiz>& __y)
{
return __y < __x;
}
template <class _Tp, class _Alloc, size_t __bufsiz>
inline bool operator>=(const deque<_Tp, _Alloc, __bufsiz>& __x,
const deque<_Tp, _Alloc, __bufsiz>& __y)
{
return !(__x < __y);
}
template <class _Tp, class _Alloc, size_t __bufsiz>
inline bool operator<=(const deque<_Tp, _Alloc, __bufsiz>& __x,
const deque<_Tp, _Alloc, __bufsiz>& __y)
{
return !(__y < __x);
}
# endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
#endif /* __STL_NON_TYPE_TMPL_PARAM_BUG */
// do a cleanup
# undef deque
# if defined (__STL_USE_WRAPPER_FOR_ALLOC_PARAM) || \
defined (__STL_NO_DEFAULT_NON_TYPE_PARAM)
// provide a "default" deque adaptor
# if (defined (__STL_DEFAULT_TYPE_PARAM) && defined (__STL_USE_SGI_ALLOCATORS)) || \
! defined (__STL_LIMITED_DEFAULT_TEMPLATES)
template <class _Tp, __STL_DEFAULT_ALLOCATOR_SELECT(_Tp) >
class deque : public __deque__<_Tp,_Alloc,size_t(0)> {
public:
# define _DEQUE_SUPER __deque__<_Tp,_Alloc,size_t(0)>
typedef deque<_Tp, _Alloc> _Self;
# else
template <class _Tp>
class deque : public __deque__<_Tp, __STL_DEFAULT_ALLOCATOR(_Tp), size_t(0)> {
public:
# define _DEQUE_SUPER __deque__<_Tp, __STL_DEFAULT_ALLOCATOR(_Tp), size_t(0)>
typedef deque<_Tp> _Self;
# endif
typedef _DEQUE_SUPER _Super;
__IMPORT_WITH_REVERSE_ITERATORS(_Super)
__IMPORT_SUPER_COPY_ASSIGNMENT(deque, _Self, _DEQUE_SUPER)
deque() : _DEQUE_SUPER() { }
deque(size_type __n, const _Tp& __value) : _DEQUE_SUPER(__n, __value) { }
explicit deque(size_type __n) : _DEQUE_SUPER(__n) { }
deque(const _Tp* __first, const _Tp* __last) : _DEQUE_SUPER(__first, __last) { }
deque(const_iterator __first, const_iterator __last) : _DEQUE_SUPER(__first, __last) { }
~deque() { }
};
# if defined (__STL_BASE_MATCH_BUG)
template <class _Tp>
inline bool
operator==(const deque<_Tp>& __x, const deque<_Tp>& __y) {
return __x.size() == __y.size() && equal(__x.begin(), __x.end(), __y.begin());
}
template <class _Tp>
inline bool
operator<(const deque<_Tp>& __x, const deque<_Tp>& __y) {
return lexicographical_compare(__x.begin(), __x.end(), __y.begin(), __y.end());
}
# endif /* BASE_MATCH_BUG */
# undef _DEQUE_SUPER
# endif /* __STL_DEFAULT_TYPE_PARAM */
#if defined(__STL_FUNCTION_TMPL_PARTIAL_ORDER) && \
!defined(__STL_NON_TYPE_TMPL_PARAM_BUG)
template <class _Tp, class _Alloc, size_t __bufsiz>
inline void
swap(__deque__<_Tp,_Alloc,__bufsiz>& __x, __deque__<_Tp,_Alloc,__bufsiz>& __y)
{
__x.swap(__y);
}
#endif
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#pragma reset woff 1375
#endif
__STL_END_NAMESPACE
# if !defined (__STL_LINK_TIME_INSTANTIATION)
# include <stl_deque.c>
# endif
#endif /* __SGI_STL_INTERNAL_DEQUE_H */
// Local Variables:
// mode:C++
// End: