cgal/Packages/Cartesian_kernel/include/CGAL/Cartesian/Triangle_2.h

311 lines
7.9 KiB
C++

// Copyright (c) 2000 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $Source$
// $Revision$ $Date$
// $Name$
//
// Author(s) : Andreas Fabri, Herve Bronnimann
#ifndef CGAL_CARTESIAN_TRIANGLE_2_H
#define CGAL_CARTESIAN_TRIANGLE_2_H
#include <CGAL/Threetuple.h>
#include <CGAL/Cartesian/predicates_on_points_2.h>
CGAL_BEGIN_NAMESPACE
template <class R_>
class TriangleC2
{
typedef typename R_::FT FT;
typedef typename R_::Point_2 Point_2;
typedef typename R_::Vector_2 Vector_2;
typedef typename R_::Triangle_2 Triangle_2;
typedef typename R_::Aff_transformation_2 Aff_transformation_2;
typedef Threetuple<Point_2> Rep;
typedef typename R_::template Handle<Rep>::type Base;
Base base;
public:
typedef R_ R;
TriangleC2() {}
TriangleC2(const Point_2 &p, const Point_2 &q, const Point_2 &r)
: base(p, q, r) {}
bool operator==(const TriangleC2 &s) const;
bool operator!=(const TriangleC2 &s) const;
const Point_2 & vertex(int i) const;
const Point_2 & operator[](int i) const;
Triangle_2 opposite() const;
Triangle_2 transform(const Aff_transformation_2 &t) const
{
return TriangleC2<R>(t.transform(vertex(0)),
t.transform(vertex(1)),
t.transform(vertex(2)));
}
Orientation orientation() const;
Oriented_side oriented_side(const Point_2 &p) const;
Bounded_side bounded_side(const Point_2 &p) const;
bool has_on_boundary(const Point_2 &p) const;
bool has_on_bounded_side(const Point_2 &p) const;
bool has_on_unbounded_side(const Point_2 &p) const;
bool has_on_positive_side(const Point_2 &p) const;
bool has_on_negative_side(const Point_2 &p) const;
bool is_degenerate() const;
Bbox_2 bbox() const;
FT area() const;
};
template < class R >
CGAL_KERNEL_MEDIUM_INLINE
bool
TriangleC2<R>::operator==(const TriangleC2<R> &t) const
{
if (CGAL::identical(base, t.base))
return true;
int i;
for(i=0; i<3; i++)
if ( vertex(0) == t.vertex(i) )
break;
return (i<3) && vertex(1) == t.vertex(i+1) && vertex(2) == t.vertex(i+2);
}
template < class R >
inline
bool
TriangleC2<R>::operator!=(const TriangleC2<R> &t) const
{
return !(*this == t);
}
template < class R >
CGAL_KERNEL_MEDIUM_INLINE
const typename TriangleC2<R>::Point_2 &
TriangleC2<R>::vertex(int i) const
{
if (i>2) i = i%3;
else if (i<0) i = (i%3) + 3;
return (i==0) ? get(base).e0 :
(i==1) ? get(base).e1 :
get(base).e2;
}
template < class R >
inline
const typename TriangleC2<R>::Point_2 &
TriangleC2<R>::operator[](int i) const
{
return vertex(i);
}
template < class R >
CGAL_KERNEL_MEDIUM_INLINE
typename TriangleC2<R>::FT
TriangleC2<R>::area() const
{
typename R::Compute_area_2 compute_area;
return compute_area(vertex(0), vertex(1), vertex(2));
}
template < class R >
inline
Orientation
TriangleC2<R>::orientation() const
{
typename R::Orientation_2 orientation;
return orientation(vertex(0), vertex(1), vertex(2));
}
template < class R >
CGAL_KERNEL_LARGE_INLINE
Bounded_side
TriangleC2<R>::
bounded_side(const typename TriangleC2<R>::Point_2 &p) const
{
typename R::Collinear_are_ordered_along_line_2
collinear_are_ordered_along_line;
typename R::Orientation_2 orientation;
Orientation o1 = orientation(vertex(0), vertex(1), p),
o2 = orientation(vertex(1), vertex(2), p),
o3 = orientation(vertex(2), vertex(3), p);
if (o2 == o1 && o3 == o1)
return ON_BOUNDED_SIDE;
return
(o1 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(0), p, vertex(1))) ||
(o2 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(1), p, vertex(2))) ||
(o3 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(2), p, vertex(3)))
? ON_BOUNDARY
: ON_UNBOUNDED_SIDE;
}
template < class R >
CGAL_KERNEL_LARGE_INLINE
Oriented_side
TriangleC2<R>::
oriented_side(const typename TriangleC2<R>::Point_2 &p) const
{
typename R::Collinear_are_ordered_along_line_2
collinear_are_ordered_along_line;
typename R::Orientation_2 orientation;
// depends on the orientation of the vertices
Orientation o1 = orientation(vertex(0), vertex(1), p),
o2 = orientation(vertex(1), vertex(2), p),
o3 = orientation(vertex(2), vertex(3), p),
ot = orientation(vertex(0), vertex(1), vertex(2));
if (o1 == ot && o2 == ot && o3 == ot) // ot cannot be COLLINEAR
return Oriented_side(ot);
return
(o1 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(0), p, vertex(1))) ||
(o2 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(1), p, vertex(2))) ||
(o3 == COLLINEAR
&& collinear_are_ordered_along_line(vertex(2), p, vertex(3)))
? ON_ORIENTED_BOUNDARY
: Oriented_side(-ot);
}
template < class R >
CGAL_KERNEL_LARGE_INLINE
bool
TriangleC2<R>::
has_on_bounded_side(const typename TriangleC2<R>::Point_2 &p) const
{
return bounded_side(p) == ON_BOUNDED_SIDE;
}
template < class R >
CGAL_KERNEL_LARGE_INLINE
bool
TriangleC2<R>::
has_on_unbounded_side(const typename TriangleC2<R>::Point_2 &p) const
{
return bounded_side(p) == ON_UNBOUNDED_SIDE;
}
template < class R >
inline
bool
TriangleC2<R>::
has_on_boundary(const typename TriangleC2<R>::Point_2 &p) const
{
return bounded_side(p) == ON_BOUNDARY;
}
template < class R >
inline
bool
TriangleC2<R>::
has_on_negative_side(const typename TriangleC2<R>::Point_2 &p) const
{
return oriented_side(p) == ON_NEGATIVE_SIDE;
}
template < class R >
inline
bool
TriangleC2<R>::
has_on_positive_side(const typename TriangleC2<R>::Point_2 &p) const
{
return oriented_side(p) == ON_POSITIVE_SIDE;
}
template < class R >
inline
bool
TriangleC2<R>::is_degenerate() const
{
typename R::Collinear_2 collinear;
return collinear(vertex(0), vertex(1), vertex(2));
}
template < class R >
inline
Bbox_2
TriangleC2<R>::bbox() const
{
typename R::Construct_bbox_2 construct_bbox_2;
return construct_bbox_2(vertex(0))
+ construct_bbox_2(vertex(1))
+ construct_bbox_2(vertex(2));
}
template < class R >
inline
typename TriangleC2<R>::Triangle_2
TriangleC2<R>::opposite() const
{
return TriangleC2<R>(vertex(0), vertex(2), vertex(1));
}
#ifndef CGAL_NO_OSTREAM_INSERT_TRIANGLEC2
template < class R >
std::ostream &
operator<<(std::ostream &os, const TriangleC2<R> &t)
{
switch(os.iword(IO::mode)) {
case IO::ASCII :
return os << t[0] << ' ' << t[1] << ' ' << t[2];
case IO::BINARY :
return os << t[0] << t[1] << t[2];
default:
return os<< "TriangleC2(" << t[0] << ", "
<< t[1] << ", " << t[2] <<")";
}
}
#endif // CGAL_NO_OSTREAM_INSERT_TRIANGLEC2
#ifndef CGAL_NO_ISTREAM_EXTRACT_TRIANGLEC2
template < class R >
std::istream &
operator>>(std::istream &is, TriangleC2<R> &t)
{
typename R::Point_2 p, q, r;
is >> p >> q >> r;
if (is)
t = TriangleC2<R>(p, q, r);
return is;
}
#endif // CGAL_NO_ISTREAM_EXTRACT_TRIANGLEC2
CGAL_END_NAMESPACE
#endif // CGAL_CARTESIAN_TRIANGLE_2_H