cgal/Packages/Planar_map/include/CGAL/Pm_default_dcel.h

663 lines
18 KiB
C++

// Copyright (c) 1997 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $Source$
// $Revision$ $Date$
// $Name$
//
// Author(s) : Iddo Hanniel <hanniel@math.tau.ac.il>
// Oren Nechushtan <theoren@math.tau.ac.il>
#ifndef CGAL_PM_DEFAULT_DCEL_H
#define CGAL_PM_DEFAULT_DCEL_H 1
#include <CGAL/basic.h>
#include <list>
#include <map>
#include <CGAL/N_step_adaptor.h>
#include <CGAL/In_place_list.h>
#include <CGAL/HalfedgeDS_iterator.h>
CGAL_BEGIN_NAMESPACE
template <class Pt>
class Pm_vertex_base {
protected:
void* hdg;
Pt pt;
public:
typedef Pt Point;
Pm_vertex_base() {}
Pm_vertex_base( const Pt& p) : pt(p) {}
virtual ~Pm_vertex_base() {}
void* halfedge() {return hdg;}
const void* halfedge() const {return hdg;}
void set_halfedge( void* h) { hdg = h;}
// an incident halfedge pointing at `v'.
Point& point() { return pt;}
const Point& point() const { return pt;}
void set_point(const Point& p) {pt=p;}
// assign function for non-connectivity data
virtual void assign(const Pm_vertex_base<Pt> &v)
{
pt = v.pt;
}
};
template <class X_curve>
class Pm_halfedge_base {
public:
typedef X_curve Curve;
Pm_halfedge_base() {}
Pm_halfedge_base(const X_curve& c) : cv(c) {}
virtual ~Pm_halfedge_base() {}
void* opposite() { return opp;}
const void* opposite() const { return opp;}
void* next() { return nxt;}
const void* next() const { return nxt;}
// the next halfedge along the face.
void set_opposite( void* h) { opp = h;}
void set_next( void* h) { nxt = h;}
void* vertex() { return v;}
const void* vertex() const { return v;}
void* face() { return f;}
const void* face() const { return f;}
// the face to the left.
void set_vertex( void* _v) { v = _v;}
void set_face( void* _f) { f = _f;}
Curve& curve() { return cv;}
const Curve& curve() const { return cv;}
void set_curve(const X_curve& c) {cv=c;}
// assign function for non-connectivity data
virtual void assign(const Pm_halfedge_base<X_curve> &e)
{
cv = e.cv;
}
protected:
void* opp;
void* nxt;
void* v; //target
void* f; //face
X_curve cv;
};
class Pm_face_base {
public:
typedef std::list<void*> Holes_container;
typedef Holes_container::iterator Holes_iterator;
typedef Holes_container::const_iterator Holes_const_iterator;
Pm_face_base() : holes() {};
virtual ~Pm_face_base() {}
void* halfedge() { return hdg;}
const void* halfedge() const { return hdg;}
void set_halfedge(void* h) {hdg=h;}
Holes_iterator holes_begin() {return holes.begin();}
Holes_iterator holes_end() {return holes.end();}
Holes_const_iterator holes_begin() const {return holes.begin();}
Holes_const_iterator holes_end() const {return holes.end();}
void add_hole(void* halfedge_ptr)
{
holes.push_back(halfedge_ptr);
}
void erase_hole(Holes_iterator hit) {
holes.erase(hit);
}
void erase_holes(Holes_iterator first, Holes_iterator last) {
holes.erase(first,last);
}
// assign function for non-connectivity data
virtual void assign(const Pm_face_base &f)
{
// The reason we do not assign anything here is because
// we can't copy pointers of a face from another Pm_dcel.
// The assign function of Pm_dcel does all the necessary updates.
(void) f; // We avoid the `unused parameter' warning.
}
private:
void* hdg;
Holes_container holes ;
};
template <class V, class H, class F> class _Pm_Vertex;
template <class V, class H, class F> class _Pm_Halfedge;
template <class V, class H, class F> class _Pm_Face;
template <class V, class H, class F>
class _Pm_Vertex
: public V,
public In_place_list_base< _Pm_Vertex<V,H,F> >
{
public:
typedef V Base;
typedef _Pm_Vertex<V,H,F> Vertex;
typedef _Pm_Halfedge<V,H,F> Halfedge;
typedef _Pm_Face<V,H,F> Face;
_Pm_Vertex() {}
// _Pm_Vertex( const Point& p) : V(p) {}
Halfedge* halfedge() {return (Halfedge*)(V::halfedge());}
const Halfedge* halfedge() const {return (const Halfedge*)(V::halfedge());}
void set_halfedge( Halfedge* h) { V::set_halfedge(h);}
/* irrelevant
#if _MSC_VER>=1100
public:
#else
protected:
#endif
//forbid copy constructor and assignment (only derived classes can use them)
_Pm_Vertex( const _Pm_Vertex&);
_Pm_Vertex& operator=(const _Pm_Vertex&);
*/
};
template <class V, class H, class F>
class _Pm_Halfedge
: public H,
public In_place_list_base< _Pm_Halfedge<V,H,F> >
{
public:
typedef H Base;
typedef _Pm_Vertex<V,H,F> Vertex;
typedef _Pm_Halfedge<V,H,F> Halfedge;
typedef _Pm_Face<V,H,F> Face;
_Pm_Halfedge() : H() {}
//_Pm_Halfedge( const Curve& c) : H(c) {}
Halfedge* opposite() {return (Halfedge*)(H::opposite());}
Halfedge* next() {return (Halfedge*)(H::next());}
//in the future will probably be implemented in a max base
// const Halfedge* prev() const {return (const Halfedge*)(H::prev());}
Vertex* vertex() {return (Vertex*)(H::vertex());}
Face* face() {return (Face*)(H::face());}
const Halfedge* opposite() const {return (const Halfedge*)(H::opposite());}
const Halfedge* next() const {return (const Halfedge*)(H::next());}
//in the future will probably be implemented in a max base
// const Halfedge* prev() const {return (const Halfedge*)(H::prev());}
const Vertex* vertex() const {return (const Vertex*)(H::vertex());}
const Face* face() const {return (const Face*)(H::face());}
void set_next( Halfedge* h) { H::set_next(h);}
void set_vertex( Vertex* ve) { H::set_vertex(ve);}
void set_face( Face* face) { H::set_face(face);}
//private:
void set_opposite( void* h) { H::set_opposite(h);}
/*
#if _MSC_VER>=1100
public:
#else
protected:
#endif
//forbid copy constructor and assignment (only derived classes can use them)
_Pm_Halfedge( const _Pm_Halfedge&);
_Pm_Halfedge& operator=(const _Pm_Halfedge&);
*/
};
template <class V, class H, class F>
class _Pm_Face
: public F,
public In_place_list_base< _Pm_Face<V,H,F> >
{
public:
typedef F Base;
typedef _Pm_Vertex<V,H,F> Vertex;
typedef _Pm_Halfedge<V,H,F> Halfedge;
typedef _Pm_Face<V,H,F> Face;
_Pm_Face() {}
Halfedge* halfedge() {return (Halfedge*)(F::halfedge());}
const Halfedge* halfedge() const {return (const Halfedge*)(F::halfedge());}
void set_halfedge( Halfedge* h) { F::set_halfedge(h);}
typedef I_HalfedgeDS_iterator< typename F::Holes_iterator,
Halfedge*,
typename F::Holes_iterator::difference_type,
typename F::Holes_iterator::iterator_category> Holes_iterator;
typedef I_HalfedgeDS_const_iterator<
typename F::Holes_const_iterator,
typename F::Holes_iterator,
const Halfedge*,
typename F::Holes_const_iterator::difference_type,
typename F::Holes_const_iterator::iterator_category> Holes_const_iterator;
void add_hole(Halfedge* h) { F::add_hole(h); }
void erase_hole(Holes_iterator hit) {F::erase_hole(hit.current_iterator());}
void erase_holes(Holes_iterator first, Holes_iterator last)
{F::erase_holes(first.current_iterator(), last.current_iterator());}
Holes_iterator holes_begin() {return F::holes_begin();}
Holes_iterator holes_end() {return F::holes_end();}
Holes_const_iterator holes_begin() const {return F::holes_begin();}
Holes_const_iterator holes_end() const {return F::holes_end();}
/*
#if _MSC_VER>=1100
public:
#else
protected:
#endif
//forbid copy constructor and assignment (only derived classes can use them)
_Pm_Face( const _Pm_Face&);
_Pm_Face& operator=(const _Pm_Face&);
*/
};
// A Dcel Class Using Lists
// ----------------------------------
//
template < class V, class H, class F>
class Pm_dcel {
public:
typedef Pm_dcel<V,H,F> Self;
typedef _Pm_Vertex<V,H,F> Vertex;
typedef _Pm_Halfedge<V,H,F> Halfedge;
typedef _Pm_Face<V,H,F> Face;
protected:
// Three managed in-place lists for the elements.
typedef In_place_list<Vertex,false> Vertex_list;
typedef In_place_list<Halfedge,false> Halfedge_list;
typedef In_place_list<Face,false> Face_list;
public:
typedef typename Halfedge_list::size_type Size;
typedef typename Halfedge_list::size_type size_type;
typedef typename Halfedge_list::difference_type difference_type;
typedef typename Halfedge_list::difference_type Difference;
typedef std::bidirectional_iterator_tag iterator_category;
protected:
Vertex_list vertices;
Halfedge_list halfedges;
Face_list faces;
public:
typedef typename Vertex_list::iterator Vertex_iterator;
typedef typename Halfedge_list::iterator Halfedge_iterator;
typedef typename Face_list::iterator Face_iterator;
typedef CGAL::N_step_adaptor< Halfedge_iterator, 2> Edge_iterator;
typedef typename Vertex_list::const_iterator Vertex_const_iterator;
typedef typename Halfedge_list::const_iterator Halfedge_const_iterator;
typedef typename Face_list::const_iterator Face_const_iterator;
typedef CGAL::N_step_adaptor<Halfedge_const_iterator,2> Edge_const_iterator;
// CREATION
Pm_dcel() {}
#if _MSC_VER>=1100
public:
#else
private:
#endif
// Forbid copy constructor and assignment (will be implemented later).
Pm_dcel( const Self&) {}
Self& operator=( const Self&) { return *this;}
// DESTRUCTION
public:
~Pm_dcel() { delete_all(); }
public:
// Access Member Functions
Size size_of_vertices() const { return vertices.size();}
Size size_of_halfedges() const { return halfedges.size();}
Size size_of_faces() const { return faces.size();}
Vertex_iterator vertices_begin() { return vertices.begin();}
Vertex_iterator vertices_end() { return vertices.end();}
Halfedge_iterator halfedges_begin() { return halfedges.begin();}
Halfedge_iterator halfedges_end() { return halfedges.end();}
Face_iterator faces_begin() { return faces.begin();}
Face_iterator faces_end() { return faces.end();}
Edge_iterator edges_begin() { return halfedges.begin();}
Edge_iterator edges_end() { return halfedges.end();}
// The constant iterators and circulators.
Vertex_const_iterator vertices_begin() const{ return vertices.begin();}
Vertex_const_iterator vertices_end() const{ return vertices.end();}
Halfedge_const_iterator halfedges_begin() const{ return halfedges.begin();}
Halfedge_const_iterator halfedges_end() const{ return halfedges.end();}
Face_const_iterator faces_begin() const{ return faces.begin();}
Face_const_iterator faces_end() const{ return faces.end();}
Edge_const_iterator edges_begin() const{ return halfedges.begin();}
Edge_const_iterator edges_end() const{ return halfedges.end();}
// Insertion
//
// The following operations just allocate a new element of that type.
// Halfedges are always allocated in pairs of opposite halfedges. The
// opposite pointers are automatically set.
Vertex* new_vertex() {
Vertex* v = new Vertex;
vertices.push_back( *v);
return v;
}
Vertex* new_vertex( const Vertex* w) {
Vertex* v = new Vertex(*w);
vertices.push_back( *v);
return v;
}
/*
Vertex* new_vertex( const Point& p) {
Vertex* v = new Vertex(p);
vertices.push_back( *v);
return v;
}
*/
Halfedge * new_halfedge() {
Halfedge * h = new Halfedge;
halfedges.push_back(*h);
return h;
}
Halfedge * new_halfedge(const Halfedge * he) {
Halfedge * h = new Halfedge( *he);
halfedges.push_back(*h);
return h;
}
Halfedge * new_edge() {
// creates a new pair of opposite halfedges.
Halfedge * h = new_halfedge();
Halfedge * g = new_halfedge();
h->H::set_opposite(g);
g->H::set_opposite(h);
return h;
}
Halfedge * new_edge( const Halfedge * he) {
Halfedge * h = new_halfedge(he);
Halfedge * g = new_halfedge(he->opposite());
h->H::set_opposite(g);
g->H::set_opposite(h);
return h;
}
/*
Halfedge* new_edge(const Curve& c) {
Halfedge* h = new Halfedge(c);
Halfedge* g = new Halfedge(c); //maybe change to flip??
// h->H::set_twin(g);
//g->H::set_twin(h);
h->H::set_opposite(g);
g->H::set_opposite(h);
halfedges.push_back( *h);
halfedges.push_back( *g);
return h;
}*/
Face * new_face() {
Face * f = new Face;
faces.push_back(*f);
return f;
}
Face * new_face(const Face * g) {
Face * f = new Face(*g);
faces.push_back(*f);
return f;
}
// Removal
//
// The following operations erase an element referenced by a pointer.
// Halfedges are always deallocated in pairs of opposite halfedges. Erase
// of single elements is optional. The deletion of all is mandatory.
void delete_vertex(Vertex * v) {
vertices.erase(v);
delete v;
}
void delete_halfedge(Halfedge * h) {
halfedges.erase(h);
delete h;
}
void delete_edge(Halfedge * h) {
// deletes the pair of opposite halfedges h.
Halfedge * g = h->opposite();
delete_halfedge(h);
delete_halfedge(g);
}
void delete_face(Face * f) {
faces.erase(f);
delete f;
}
void delete_all() {
for (Vertex_iterator vi = vertices.begin(); vi != vertices.end();) {
Vertex_iterator curr = vi;
++vi;
delete_vertex(&(*curr));
}
for (Halfedge_iterator hi = halfedges.begin(); hi != halfedges.end();) {
Halfedge_iterator curr = hi;
++hi;
delete_halfedge(&(*curr));
}
for (Face_iterator fi = faces.begin(); fi != faces.end();) {
Face_iterator curr = fi;
++fi;
delete_face(&(*curr));
}
// vertices.destroy();
// halfedges.destroy();
// faces.destroy();
}
// returns the unbounded face in the assigned map
void * assign(const Self & d, void * u_face)
{
//typedef std::map<Vertex_list::iterator, Vertex_list::iterator> VertexMap;
//typedef std::map<Halfedge_list::iterator,
// Halfedge_list::iterator> HalfedgeMap;
//typedef std::map<Face_list::iterator, Face_list::iterator> FaceMap;
typedef std::map<void*, void*> ConnectMap;
delete_all();
ConnectMap vm, hm, fm;
//VertexMap vm;
//HalfedgeMap hm;
//FaceMap fm;
Vertex_const_iterator vit;
Halfedge_const_iterator hit;
Face_const_iterator fit;
for (vit = d.vertices_begin(); vit != d.vertices_end(); vit++)
{
Vertex * nv = new_vertex();
nv->assign(*vit);
vm.insert(ConnectMap::value_type((void*)&(*vit), (void*)nv));
}
for (hit = d.halfedges_begin(); hit != d.halfedges_end(); hit++)
{
Halfedge * nh = new_halfedge();
nh->assign(*hit);
hm.insert(ConnectMap::value_type((void*)(&(*hit)), (void*)nh));
}
for (fit = d.faces_begin(); fit != d.faces_end(); fit++)
{
Face * nf = new_face();
nf->assign(*fit);
fm.insert(ConnectMap::value_type((void*)&(*fit), (void*)nf));
}
// update pointers
for (vit = d.vertices_begin(); vit != d.vertices_end(); vit++)
{
void *he, *nhe, *nv, *v;
v = (void*)(&(*vit));
nv = (void*)(vm.find(v)->second);
he = (void*)vit->halfedge();
nhe = (void*)(hm.find(he)->second);
((Vertex*)nv)->set_halfedge((Halfedge*)nhe);
}
for (hit = d.halfedges_begin(); hit != d.halfedges_end(); hit++)
{
void *he, *nhe, *v, *nv, *f, *nf, *op, *nop, *xt, *nxt;
he = (void*)(&(*hit));
nhe = hm.find(he)->second;
v = (void*)hit->vertex();
f = (void*)hit->face();
op = (void*)hit->opposite();
xt = (void*)hit->next();
nv = vm.find(v)->second;
nf = fm.find(f)->second;
nop = hm.find(op)->second;
nxt = hm.find(xt)->second;
((Halfedge*)nhe)->set_vertex((Vertex*)nv);
((Halfedge*)nhe)->set_face((Face*)nf);
((Halfedge*)nhe)->set_opposite((Halfedge*)nop);
((Halfedge*)nhe)->set_next((Halfedge*)nxt);
}
for (fit = d.faces_begin(); fit != d.faces_end(); fit++)
{
void *f, *nf, *he, *nhe, *h, *nh;
typename Face::Holes_const_iterator holes;
f = (void*)(&(*fit));
nf = fm.find(f)->second;
he = (void*)fit->halfedge();
if (he != NULL)
nhe = hm.find(he)->second;
else
nhe = NULL;
((Face*)nf)->set_halfedge((Halfedge*)nhe);
for (holes = fit->holes_begin(); holes != fit->holes_end(); holes++)
{
h = (void*)(*holes);
nh = hm.find(h)->second;
((Face*)nf)->add_hole((Halfedge*)nh);
}
}
return fm.find(u_face)->second;
}
};
///////////////////////////////////////////////////////////////
// DEFAULT DCEL
///////////////////////////////////////////////////////////////
template <class Traits>
class Pm_default_dcel
: public Pm_dcel<
Pm_vertex_base<typename Traits::Point>,
Pm_halfedge_base<typename Traits::X_curve>,
Pm_face_base
>
{
public: // CREATION
Pm_default_dcel() {}
};
CGAL_END_NAMESPACE
#endif