cgal/Packages/Polygon/doc_tex/Polygon_ref/Polygon_2.tex

349 lines
12 KiB
TeX

% +------------------------------------------------------------------------+
% | Reference manual page: Polygon_2.tex
% +------------------------------------------------------------------------+
% | 21.06.2001 Author
% | Package: Polygon
% |
\RCSdef{\RCSPolygonRev}{$Revision$}
\RCSdefDate{\RCSPolygonDate}{$Date$}
% |
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
\begin{ccRefClass}{Polygon_2<PolygonTraits_2, Container>}
%% \ccHtmlCrossLink{} %% add further rules for cross referencing links
%% \ccHtmlIndexC[class]{} %% add further index entries
\ccDefinition
The class \ccRefName\ implements polygons.
The \ccRefName\ is parameterised by a traits class and a container class.
The latter can be any class that fulfills the requirements for an STL container.
It defaults to the vector class.
\ccHeading{Caching}
By default, \ccRefName\ does not use caching. That means that every time that
a member function like \ccc{is_simple} is called, the result is computed from
scratch. This behaviour can be changed by defining a macro.
\begin{ccExampleCode}
#define CGAL_POLYGON_2_CACHED
\end{ccExampleCode}
In the future, this caching behavior will be the default. The only reason that
it is not at the moment is that some compilers have problems when the
\ccc{CGAL_POLYGON_2_CACHED} flag is set. This can be fixed by setting a second
preprocessor flag as well:
\begin{ccExampleCode}
CGAL_POLYGON_2_MOD_ITER
\end{ccExampleCode}
The drawback of setting this flag is that some illegal operations will be
allowed which can lead to wrong results.
The iterators of the polygon are mutable in this case, but modifying the polygon
through them will not invalidate the cache.
\ccInclude{CGAL/Polygon_2.h}
%\ccIsModel
%Concept
\ccTypes
\ccNestedType{Traits}{The traits type.}
\ccGlue
\ccNestedType{Container}{The container type.}
\ccTypedef{typedef Traits::FT FT;}
{The number type, which is the {\em field type} of the points of the polygon.}
\ccGlue
\ccTypedef{typedef Traits::Point_2 Point_2;}{The point type of the polygon.}
\ccGlue
\ccTypedef{typedef Traits::Segment_2 Segment_2;}{The type of a segment between two
points
of the polygon.}
The following types denote iterators that allow to traverse the vertices and
edges of a polygon.
Since it is questionable whether a polygon should be viewed as a circular or
as a linear data structure both circulators and iterators are defined.
The circulators and iterators are non-mutable.\footnote{At least conceptually.
The enforcement depends on preprocessor flags.}
The iterator category is in all cases bidirectional, except for
\ccStyle{Vertex_iterator}, which has the
same iterator category as \ccStyle{Container::iterator}.
{\bf N.B.} In fact all of them should have the same iterator category as
\ccStyle{Container::iterator}. However, due to compiler problems this is currently
not possible.
For vertices we define
\ccNestedType{Vertex_iterator}{}
\ccGlue
\ccNestedType{Vertex_circulator}{}
Their value type is \ccStyle{Point_2}.
For edges we define
\ccNestedType{Edge_const_circulator}{}
\ccGlue
\ccNestedType{Edge_const_iterator}{}
Their value type is \ccStyle{Segment_2}.
\ccCreation
\ccCreationVariable{pgn} %% choose variable name
\ccConstructor{Polygon_2(Traits p_traits = Traits());}{Creates an empty polygon \ccVar.}
\ccConstructor{template <class InputIterator>
Polygon_2( InputIterator first, InputIterator last,
Traits p_traits = Traits()); }
{ Introduces a polygon \ccVar\ with vertices from the sequence defined by
the range \ccStyle{[first,last)}.
The value type of \ccStyle{InputIterator} must be \ccc{Point_2}.
}
\ccModifiers
\ccMethod{void set(Vertex_iterator pos, const Point_2& x);}
{ Acts as \ccc{*pos = x}, except that that would be illegal because the
iterator is not mutable.}
\ccMethod{ Vertex_iterator insert(Vertex_iterator i, const Point_2& q);}
{ Inserts the vertex \ccStyle{q} before \ccStyle{i}.
The return value points to the inserted vertex. }
\clearpage
\ccMethod{template <class InputIterator>
void insert(Vertex_iterator i, InputIterator first, InputIterator last);}
{ Inserts the vertices in the range \ccStyle{[first, last)} before
\ccStyle{i}.
The value type of points in the range \ccStyle{[first,last)} must be
\ccStyle{Point_2}.
}
\ccMethod{ void push_back(const Point_2& q);}
{ Has the same semantics as \ccStyle{p.insert(p.vertices_end(), q)}.}
\ccMethod{ void erase(Vertex_iterator i);}
{ Erases the vertex pointed to by \ccStyle{i}.}
\ccMethod{ void erase(Vertex_iterator first, Vertex_iterator last);}
{ Erases the vertices in the range \ccStyle{[first, last)}.}
\ccMethod{ void reverse_orientation(); }
{ Reverses the orientation of the polygon. The vertex pointed to by
\ccStyle{p.vertices_begin()} remains the same. }
\ccAccessFunctions
The following methods of the class \ccClassName\ return
circulators and iterators that allow to traverse the vertices and edges.
\ccMethod{ Vertex_iterator vertices_begin() const; }
{ Returns a constant iterator that allows to traverse the vertices of
the polygon \ccStyle{p}.}
\ccMethod{ Vertex_iterator vertices_end() const; }
{ Returns the corresponding past-the-end iterator. }
\ccMethod{ Vertex_circulator vertices_circulator() const; }
{ Returns a mutable circulator that allows to traverse the vertices of
the polygon \ccStyle{p}.}
\ccMethod{ Edge_const_iterator edges_begin() const;}
{ Returns a non-mutable iterator that allows to traverse the edges of
the polygon \ccStyle{p}.}
\ccMethod{ Edge_const_iterator edges_end() const;}
{ Returns the corresponding past-the-end iterator. }
\ccMethod{ Edge_const_circulator edges_circulator() const;}
{ Returns a non-mutable circulator that allows to traverse the edges of
the polygon \ccStyle{p}.}
\ccPredicates
\ccMethod{bool is_simple() const;}
{ Returns whether \ccStyle{p} is a simple polygon.}
\ccMethod{bool is_convex() const;}
{ Returns whether \ccStyle{p} is convex. }
\ccMethod{Orientation orientation() const;}
{ Returns the orientation of \ccVar. If the number of vertices
$\ccStyle{p.size()} < 3$ then \ccStyle{COLLINEAR} is returned.
\ccPrecond \ccStyle{p.is_simple()}.
}
\ccMethod{Oriented_side oriented_side(const Point_2& q) const;}
{ Returns \ccStyle{POSITIVE_SIDE}, or \ccStyle{NEGATIVE_SIDE},
or \ccStyle{ON_ORIENTED_BOUNDARY},
depending on where point \ccStyle{q} is.
\ccPrecond \ccStyle{p.is_simple()}.
}
\ccMethod{Bounded_side bounded_side(const Point_2& q) const;}
{ Returns the symbolic constant \ccStyle{ON_BOUNDED_SIDE},
\ccStyle{ON_BOUNDARY}
or \ccStyle{ON_UNBOUNDED_SIDE}, depending on where point
\ccStyle{q} is.
\ccPrecond \ccStyle{p.is_simple()}.
}
\ccMethod{Bbox_2 bbox() const;}
{ Returns the smallest bounding box containing \ccVar.}
\ccMethod{Traits::FT area() const;}
{ Returns the signed area of the polygon \ccVar. This means that the area is
positive for counter clockwise polygons and negative for clockwise polygons.
}
\ccMethod{Vertex_iterator left_vertex();}
{ Returns the leftmost vertex of the polygon \ccStyle{p} with the smallest
\ccStyle{y}-coordinate. }
\ccMethod{Vertex_iterator right_vertex();}
{ Returns the rightmost vertex of the polygon \ccStyle{p} with the largest
\ccStyle{y}-coordinate. }
\ccMethod{Vertex_iterator top_vertex();}
{ Returns topmost vertex of the polygon \ccStyle{p} with the largest
\ccStyle{x}-coordinate. }
\ccMethod{Vertex_iterator bottom_vertex();}
{ Returns the bottommost vertex of the polygon \ccStyle{p} with the smallest
\ccStyle{x}-coordinate. }
For convenience we provide the following boolean functions:
\ccThree{Segment_2}{}{\hspace*{10cm}}
\ccMethod{bool is_counterclockwise_oriented() const;}
{}
\ccGlue
\ccMethod{bool is_clockwise_oriented() const;}
{}
\ccMethod{bool is_collinear_oriented() const;}
{}
\ccGlue
\ccMethod{bool has_on_positive_side(const Point_2& q) const;}
{}
\ccGlue
\ccMethod{bool has_on_negative_side(const Point_2& q) const;}
{}
\ccGlue
\ccMethod{bool has_on_boundary(const Point_2& q) const;}
{}
\ccGlue
\ccMethod{bool has_on_bounded_side(const Point_2& q) const;}
{}
\ccGlue
\ccMethod{bool has_on_unbounded_side(const Point_2& q) const;}
{}
\ccHeading{Random access methods}
These methods are only available for random access containers.
\ccMethod{const Point_2& vertex(int i) const;}
{ Returns a (const) reference to the $i$-th vertex. }
\ccMethod{const Point_2& operator[](int i) const;}
{ Returns a (const) reference to the $i$-th vertex. }
\ccMethod{Segment_2 edge(int i) const;}
{ Returns a const reference to the $i$-th edge. }
\ccHeading{Miscellaneous}
\ccMethod{int size() const;}
{ Returns the number of vertices of the polygon \ccVar.}
\ccMethod{bool is_empty() const;}
{ Returns $\ccStyle{p.size()} == 0$.}
\ccMethod{const Container& container() const;}
{ Returns a const reference to the sequence of vertices of the polygon
\ccVar. }
\ccHidden\ccMethod{bool identical(const Polygon_2<Traits,Container> &) const;}
{}
\ccHeading{Globally defined operators}
\ccStyle{template <class Traits, class Container1, class Container2>}
\ccFunction{
bool operator==(const Polygon_2<Traits,Container1>& p1,
const Polygon_2<Traits,Container2>& p2);}
{ Test for equality: two polygons are equal iff there exists a cyclic
permutation of the vertices of \ccStyle{p2} such that they are equal to the
vertices of \ccStyle{p1}. Note that the template argument
\ccStyle{Container} of \ccStyle{p1} and \ccStyle{p2} may be different. }
\ccStyle{template <class Traits, class Container1, class Container2>}
\ccFunction{
bool operator!=(const Polygon_2<Traits,Container1>& p1,
const Polygon_2<Traits,Container2>& p2);}
{ Test for inequality. }
\ccStyle{template <class Transformation, class Traits, class Container>}
\ccFunction{
Polygon_2<Traits,Container>
transform(const Transformation& t, const Polygon_2<Traits,Container>& p);}
{ Returns the image of the polygon \ccc{p} under the transformation \ccc{t}. }
%\ccSeeAlso
\ccImplementation
The methods
\ccStyle{is_simple},
\ccStyle{is_convex},
\ccStyle{orientation},
\ccStyle{oriented_side},
\ccStyle{bounded_side},
\ccStyle{bbox},
\ccStyle{area},
\ccStyle{left_vertex},
\ccStyle{right_vertex},
\ccStyle{top_vertex} and
\ccStyle{bottom_vertex}
are all implemented using the algorithms on sequences of 2D points.
See the corresponding global functions for information about which algorithms
were used and what complexity they have.
% described
%in section \ref{sec:poly_algo}. There you can find information about which
%algorithms were used and what complexity they have.
If caching is turned on, all functions are cached except those that compute on
which side of the polygon a point is situated.
The cache is invalidated after any operation that modifies the polygon.
\ccExample
The following code fragment creates a polygon and checks if it is convex.
\ccIncludeVerbatim{Polygon/Polygon.C}
%% \ccIncludeExampleCode{Polygon/Polygon_2_prog.C}
\end{ccRefClass}
% +------------------------------------------------------------------------+
%%RefPage: end of main body, begin of footer
% EOF
% +------------------------------------------------------------------------+