cgal/Packages/Triangulation_3/include/CGAL/Regular_triangulation_3.h

878 lines
26 KiB
C++

// Copyright (c) 1999-2004 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $Source$
// $Revision$ $Date$
// $Name$
//
// Author(s) : Monique Teillaud <Monique.Teillaud@sophia.inria.fr>
// Sylvain Pion <Sylvain.Pion@sophia.inria.fr>
#ifndef CGAL_REGULAR_TRIANGULATION_3_H
#define CGAL_REGULAR_TRIANGULATION_3_H
#include <CGAL/basic.h>
#include <set>
#include <CGAL/Triangulation_short_names_3.h>
#include <CGAL/Triangulation_3.h>
CGAL_BEGIN_NAMESPACE
template < class Gt,
class Tds = Triangulation_data_structure_3 <
Triangulation_vertex_base_3<Gt>,
Triangulation_cell_base_3<Gt> > >
class Regular_triangulation_3
: public Triangulation_3<Gt,Tds>
{
typedef Regular_triangulation_3<Gt, Tds> Self;
typedef Triangulation_3<Gt,Tds> Tr_Base;
public:
typedef Tds Triangulation_data_structure;
typedef Gt Geom_traits;
typedef typename Tr_Base::Vertex_handle Vertex_handle;
typedef typename Tr_Base::Cell_handle Cell_handle;
typedef typename Tr_Base::Vertex Vertex;
typedef typename Tr_Base::Cell Cell;
typedef typename Tr_Base::Facet Facet;
typedef typename Tr_Base::Edge Edge;
typedef typename Tr_Base::Locate_type Locate_type;
typedef typename Tr_Base::Cell_iterator Cell_iterator;
typedef typename Tr_Base::Facet_iterator Facet_iterator;
typedef typename Tr_Base::Edge_iterator Edge_iterator;
typedef typename Tr_Base::Facet_circulator Facet_circulator;
typedef typename Tr_Base::Finite_vertices_iterator Finite_vertices_iterator;
typedef typename Tr_Base::Finite_cells_iterator Finite_cells_iterator;
typedef typename Tr_Base::Finite_facets_iterator Finite_facets_iterator;
typedef typename Tr_Base::Finite_edges_iterator Finite_edges_iterator;
typedef typename Gt::Weighted_point Weighted_point;
typedef typename Gt::Bare_point Bare_point;
typedef typename Gt::Segment_3 Segment;
typedef typename Gt::Triangle_3 Triangle;
typedef typename Gt::Tetrahedron_3 Tetrahedron;
typedef typename Gt::Object_3 Object;
using Tr_Base::cw;
using Tr_Base::ccw;
using Tr_Base::geom_traits;
using Tr_Base::number_of_vertices;
using Tr_Base::dimension;
using Tr_Base::finite_facets_begin;
using Tr_Base::finite_facets_end;
using Tr_Base::finite_vertices_begin;
using Tr_Base::finite_vertices_end;
using Tr_Base::finite_cells_begin;
using Tr_Base::finite_cells_end;
using Tr_Base::finite_edges_begin;
using Tr_Base::finite_edges_end;
using Tr_Base::tds;
using Tr_Base::infinite_vertex;
using Tr_Base::next_around_edge;
using Tr_Base::vertex_triple_index;
Regular_triangulation_3(const Gt & gt = Gt())
: Tr_Base(gt)
{}
// copy constructor duplicates vertices and cells
Regular_triangulation_3(const Regular_triangulation_3 & rt)
: Tr_Base(rt)
{
CGAL_triangulation_postcondition( is_valid() );
}
//insertion
template < typename InputIterator >
Regular_triangulation_3(InputIterator first, InputIterator last,
const Gt & gt = Gt())
: Tr_Base(gt)
{
insert(first, last);
}
template < class InputIterator >
int
insert(InputIterator first, InputIterator last)
{
int n = number_of_vertices();
while(first != last){
insert(*first);
++first;
}
return number_of_vertices() - n;
}
Vertex_handle insert(const Weighted_point & p,
Cell_handle start = Cell_handle());
Vertex_handle insert(const Weighted_point & p, Locate_type lt,
Cell_handle c, int li, int);
// Queries
Bounded_side
side_of_power_sphere( Cell_handle c, const Weighted_point &p) const;
Bounded_side
side_of_power_circle( const Facet & f, const Weighted_point & p) const
{
return side_of_power_circle(f.first, f.second, p);
}
Bounded_side
side_of_power_circle( Cell_handle c, int i, const Weighted_point &p) const;
Bounded_side
side_of_power_segment( Cell_handle c, const Weighted_point &p)
const;
Vertex_handle
nearest_power_vertex_in_cell(const Bare_point& p,
const Cell_handle& c) const;
Vertex_handle
nearest_power_vertex(const Bare_point& p, Cell_handle c =
Cell_handle()) const;
bool is_Gabriel(Cell_handle c, int i) const;
bool is_Gabriel(Cell_handle c, int i, int j) const;
bool is_Gabriel(const Facet& f)const ;
bool is_Gabriel(const Edge& e) const;
// Dual functions
Bare_point dual(Cell_handle c) const;
// Object dual(const Facet & f) const
// { return dual( f.first, f.second ); }
// Object dual(Cell_handle c, int i) const;
template < class Stream>
Stream& draw_dual(Stream & os)
{
typedef typename Gt::Line_3 Line;
typedef typename Gt::Ray_3 Ray;
Finite_facets_iterator fit = finite_facets_begin();
for (; fit != finite_facets_end(); ++fit) {
Object o = dual(*fit);
Bare_point p;
Ray r;
Segment s;
if (CGAL::assign(p,o)) os << p;
if (CGAL::assign(s,o)) os << s;
if (CGAL::assign(r,o)) os << r;
}
return os;
}
bool is_valid(bool verbose = false, int level = 0) const;
private:
bool
less_power_distance(const Bare_point &p,
const Weighted_point &q,
const Weighted_point &r) const
{
return
geom_traits().compare_power_distance_3_object()(p, q, r) == SMALLER;
}
Bare_point
construct_weighted_circumcenter(const Weighted_point &p,
const Weighted_point &q,
const Weighted_point &r,
const Weighted_point &s) const
{
return geom_traits().construct_weighted_circumcenter_3_object()(p,q,r,s);
}
Vertex_handle
nearest_power_vertex(const Bare_point &p,
Vertex_handle v,
Vertex_handle w) const
{
// In case of equality, v is returned.
CGAL_triangulation_precondition(v != w);
if (is_infinite(v)) return w;
if (is_infinite(w)) return v;
return less_power_distance(p, w->point(), v->point()) ? w : v;
}
Oriented_side
power_test(const Weighted_point &p, const Weighted_point &q) const
{
CGAL_precondition(equal(p, q));
return geom_traits().power_test_3_object()(p, q);
}
Oriented_side
power_test(const Weighted_point &p, const Weighted_point &q,
const Weighted_point &r) const
{
CGAL_precondition(collinear(p, q, r));
return geom_traits().power_test_3_object()(p, q, r);
}
Oriented_side
power_test(const Weighted_point &p, const Weighted_point &q,
const Weighted_point &r, const Weighted_point &s) const
{
CGAL_precondition(coplanar(p, q, r, s));
return geom_traits().power_test_3_object()(p, q, r, s);
}
Oriented_side
power_test(const Weighted_point &p, const Weighted_point &q,
const Weighted_point &r, const Weighted_point &s,
const Weighted_point &t) const
{
return geom_traits().power_test_3_object()(p, q, r, s, t);
}
bool in_conflict_3(const Weighted_point &p, const Cell_handle c) const
{
return side_of_power_sphere(c, p) == ON_BOUNDED_SIDE;
}
bool in_conflict_2(const Weighted_point &p, const Cell_handle c, int i) const
{
return side_of_power_circle(c, i, p) == ON_BOUNDED_SIDE;
}
bool in_conflict_1(const Weighted_point &p, const Cell_handle c) const
{
return side_of_power_segment(c, p) == ON_BOUNDED_SIDE;
}
bool in_conflict_0(const Weighted_point &p, const Cell_handle c) const
{
return power_test(c->vertex(0)->point(), p) == ON_POSITIVE_SIDE;
}
class Conflict_tester_3
{
const Weighted_point &p;
const Self *t;
mutable std::vector<Vertex_handle> cv;
public:
Conflict_tester_3(const Weighted_point &pt, const Self *tr)
: p(pt), t(tr) {}
bool operator()(const Cell_handle c) const
{
// We mark the vertices so that we can find the deleted ones easily.
if (t->in_conflict_3(p, c))
{
for (int i=0; i<4; i++)
{
Vertex_handle v = c->vertex(i);
if (v->cell() != Cell_handle())
{
cv.push_back(v);
v->set_cell(Cell_handle());
}
}
return true;
}
return false;
}
std::vector<Vertex_handle> & conflict_vector()
{
return cv;
}
};
class Conflict_tester_2
{
const Weighted_point &p;
const Self *t;
mutable std::vector<Vertex_handle> cv;
public:
Conflict_tester_2(const Weighted_point &pt, const Self *tr)
: p(pt), t(tr) {}
bool operator()(const Cell_handle c) const
{
if (t->in_conflict_2(p, c, 3))
{
for (int i=0; i<3; i++)
{
Vertex_handle v = c->vertex(i);
if (v->cell() != Cell_handle())
{
cv.push_back(v);
v->set_cell(Cell_handle());
}
}
return true;
}
return false;
}
std::vector<Vertex_handle> & conflict_vector()
{
return cv;
}
};
friend class Conflict_tester_3;
friend class Conflict_tester_2;
};
template < class Gt, class Tds >
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
Regular_triangulation_3<Gt,Tds>::
nearest_power_vertex_in_cell(const Bare_point& p,
const Cell_handle& c) const
// Returns the finite vertex of the cell c with smaller
// power distance to p.
{
CGAL_triangulation_precondition(dimension() >= 1);
Vertex_handle nearest = nearest_power_vertex(p,
c->vertex(0),
c->vertex(1));
if (dimension() >= 2) {
nearest = nearest_power_vertex(p, nearest, c->vertex(2));
if (dimension() == 3)
nearest = nearest_power_vertex(p, nearest, c->vertex(3));
}
return nearest;
}
template < class Gt, class Tds >
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
Regular_triangulation_3<Gt,Tds>::
nearest_power_vertex(const Bare_point& p, Cell_handle start) const
{
if (number_of_vertices() == 0)
return Vertex_handle();
// Use a brute-force algorithm if dimension < 3.
if (dimension() < 3) {
Finite_vertices_iterator vit = finite_vertices_begin();
Vertex_handle res = vit;
for (++vit; vit != finite_vertices_end(); ++vit)
res = nearest_power_vertex(p, res, vit);
return res;
}
Locate_type lt;
int li, lj;
// I put the cast here temporarily
// until we solve the traits class pb of regular triangulation
Cell_handle c = locate(static_cast<Weighted_point>(p), lt, li, lj, start);
// - start with the closest vertex from the located cell.
// - repeatedly take the nearest of its incident vertices if any
// - if not, we're done.
Vertex_handle nearest = nearest_power_vertex_in_cell(p, c);
std::vector<Vertex_handle> vs;
vs.reserve(32);
while (true) {
Vertex_handle tmp = nearest;
incident_vertices(nearest, std::back_inserter(vs));
for (typename std::vector<Vertex_handle>::const_iterator
vsit = vs.begin(); vsit != vs.end(); ++vsit)
tmp = nearest_power_vertex(p, tmp, *vsit);
if (tmp == nearest)
break;
vs.clear();
nearest = tmp;
}
return nearest;
}
template < class Gt, class Tds >
typename Regular_triangulation_3<Gt,Tds>::Bare_point
Regular_triangulation_3<Gt,Tds>::
dual(Cell_handle c) const
{
CGAL_triangulation_precondition(dimension()==3);
CGAL_triangulation_precondition( ! is_infinite(c) );
return construct_weighted_circumcenter( c->vertex(0)->point(),
c->vertex(1)->point(),
c->vertex(2)->point(),
c->vertex(3)->point() );
}
template < class Gt, class Tds >
Bounded_side
Regular_triangulation_3<Gt,Tds>::
side_of_power_sphere( Cell_handle c, const Weighted_point &p) const
{
CGAL_triangulation_precondition( dimension() == 3 );
int i3;
if ( ! c->has_vertex( infinite_vertex(), i3 ) ) {
return Bounded_side( power_test (c->vertex(0)->point(),
c->vertex(1)->point(),
c->vertex(2)->point(),
c->vertex(3)->point(), p) );
}
// else infinite cell :
int i0,i1,i2;
if ( (i3%2) == 1 ) {
i0 = (i3+1)&3;
i1 = (i3+2)&3;
i2 = (i3+3)&3;
}
else {
i0 = (i3+2)&3;
i1 = (i3+1)&3;
i2 = (i3+3)&3;
}
// general case
Orientation o = orientation(c->vertex(i0)->point(),
c->vertex(i1)->point(),
c->vertex(i2)->point(), p);
if (o != ZERO)
return Bounded_side(o);
// else p coplanar with i0,i1,i2
return Bounded_side( power_test( c->vertex(i0)->point(),
c->vertex(i1)->point(),
c->vertex(i2)->point(), p ) );
}
template < class Gt, class Tds >
Bounded_side
Regular_triangulation_3<Gt,Tds>::
side_of_power_circle( Cell_handle c, int i, const Weighted_point &p) const
{
CGAL_triangulation_precondition( dimension() >= 2 );
int i3 = 5;
if ( dimension() == 2 ) {
CGAL_triangulation_precondition( i == 3 );
// the triangulation is supposed to be valid, ie the facet
// with vertices 0 1 2 in this order is positively oriented
if ( ! c->has_vertex( infinite_vertex(), i3 ) )
return Bounded_side( power_test(c->vertex(0)->point(),
c->vertex(1)->point(),
c->vertex(2)->point(), p) );
// else infinite facet
// v1, v2 finite vertices of the facet such that v1,v2,infinite
// is positively oriented
Vertex_handle v1 = c->vertex( ccw(i3) ),
v2 = c->vertex( cw(i3) );
CGAL_triangulation_assertion(coplanar_orientation(v1->point(), v2->point(),
(c->mirror_vertex(i3))->point()) == NEGATIVE);
Orientation o = coplanar_orientation(v1->point(), v2->point(), p);
if ( o != ZERO )
return Bounded_side( o );
// case when p collinear with v1v2
return Bounded_side( power_test( v1->point(), v2->point(), p ) );
}// dim 2
// else dimension == 3
CGAL_triangulation_precondition( (i >= 0) && (i < 4) );
if ( ( ! c->has_vertex(infinite_vertex(),i3) ) || ( i3 != i ) ) {
// finite facet
// initialization of i0 i1 i2, vertices of the facet positively
// oriented (if the triangulation is valid)
int i0 = (i>0) ? 0 : 1;
int i1 = (i>1) ? 1 : 2;
int i2 = (i>2) ? 2 : 3;
CGAL_triangulation_precondition( coplanar ( c->vertex(i0)->point(),
c->vertex(i1)->point(),
c->vertex(i2)->point(), p) );
return Bounded_side( power_test(c->vertex(i0)->point(),
c->vertex(i1)->point(),
c->vertex(i2)->point(), p) );
}
//else infinite facet
// v1, v2 finite vertices of the facet such that v1,v2,infinite
// is positively oriented
Vertex_handle v1 = c->vertex( next_around_edge(i3,i) ),
v2 = c->vertex( next_around_edge(i,i3) );
Orientation o = (Orientation)
(coplanar_orientation( v1->point(), v2->point(),
c->vertex(i)->point()) *
coplanar_orientation( v1->point(), v2->point(), p));
// then the code is duplicated from 2d case
if ( o != ZERO )
return Bounded_side( -o );
// because p is in f iff
// it is not on the same side of v1v2 as c->vertex(i)
// case when p collinear with v1v2 :
return Bounded_side( power_test( v1->point(), v2->point(), p ) );
}
template < class Gt, class Tds >
Bounded_side
Regular_triangulation_3<Gt,Tds>::
side_of_power_segment( Cell_handle c, const Weighted_point &p) const
{
CGAL_triangulation_precondition( dimension() == 1 );
if ( ! is_infinite(c,0,1) )
return Bounded_side( power_test( c->vertex(0)->point(),
c->vertex(1)->point(), p ) );
Locate_type lt; int i;
Bounded_side soe = side_of_edge( p, c, lt, i );
if (soe != ON_BOUNDARY)
return soe;
// Either we compare weights, or we use the finite neighboring edge
Cell_handle finite_neighbor = c->neighbor(c->index(infinite_vertex()));
CGAL_assertion(!is_infinite(finite_neighbor,0,1));
return Bounded_side( power_test( finite_neighbor->vertex(0)->point(),
finite_neighbor->vertex(1)->point(), p ) );
}
template < class Gt, class Tds >
bool
Regular_triangulation_3<Gt,Tds>::
is_Gabriel(const Facet& f) const
{
return is_Gabriel(f.first, f.second);
}
template < class Gt, class Tds >
bool
Regular_triangulation_3<Gt,Tds>::
is_Gabriel(Cell_handle c, int i) const
{
CGAL_triangulation_precondition(dimension() == 3 && !is_infinite(c,i));
typename Geom_traits::Side_of_bounded_orthogonal_sphere_3
side_of_bounded_orthogonal_sphere =
geom_traits().side_of_bounded_orthogonal_sphere_3_object();
if ((!is_infinite(c->vertex(i))) &&
side_of_bounded_orthogonal_sphere(
c->vertex(vertex_triple_index(i,0))->point(),
c->vertex(vertex_triple_index(i,1))->point(),
c->vertex(vertex_triple_index(i,2))->point(),
c->vertex(i)->point()) == ON_BOUNDED_SIDE ) return false;
Cell_handle neighbor = c->neighbor(i);
int in = neighbor->index(c);
if ((!is_infinite(neighbor->vertex(in))) &&
side_of_bounded_orthogonal_sphere(
c->vertex(vertex_triple_index(i,0))->point(),
c->vertex(vertex_triple_index(i,1))->point(),
c->vertex(vertex_triple_index(i,2))->point(),
neighbor->vertex(in)->point()) == ON_BOUNDED_SIDE ) return false;
return true;
}
template < class Gt, class Tds >
bool
Regular_triangulation_3<Gt,Tds>::
is_Gabriel(const Edge& e) const
{
return is_Gabriel(e.first, e.second, e.third);
}
template < class Gt, class Tds >
bool
Regular_triangulation_3<Gt,Tds>::
is_Gabriel(Cell_handle c, int i, int j) const
{
CGAL_triangulation_precondition(dimension() == 3 && !is_infinite(c,i,j));
typename Geom_traits::Side_of_bounded_orthogonal_sphere_3
side_of_bounded_orthogonal_sphere =
geom_traits().side_of_bounded_orthogonal_sphere_3_object();
Facet_circulator fcirc = incident_facets(c,i,j),
fdone(fcirc);
Vertex_handle v1 = c->vertex(i);
Vertex_handle v2 = c->vertex(j);
do {
// test whether the vertex of cc opposite to *fcirc
// is inside the sphere defined by the edge e = (s, i,j)
Cell_handle cc = (*fcirc).first;
int ii = (*fcirc).second;
if (!is_infinite(cc->vertex(ii)) &&
side_of_bounded_orthogonal_sphere( v1->point(),
v2->point(),
cc->vertex(ii)->point())
== ON_BOUNDED_SIDE ) return false;
} while(++fcirc != fdone);
return true;
}
template < class Gt, class Tds >
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
Regular_triangulation_3<Gt,Tds>::
insert(const Weighted_point & p, Cell_handle start)
{
Locate_type lt;
int li, lj;
Cell_handle c = locate(p, lt, li, lj, start);
return insert(p, lt, c, li, lj);
}
template < class Gt, class Tds >
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
Regular_triangulation_3<Gt,Tds>::
insert(const Weighted_point & p, Locate_type lt, Cell_handle c, int li, int)
{
switch (dimension()) {
case 3:
{
// TODO :
// In case the point is completely equal (including weight), then we need
// to discard it (don't update the triangulation, nor hide it), right ?
if (! in_conflict_3(p, c)) { // new point is hidden
if (lt == Tr_Base::VERTEX)
return c->vertex(li); // by coinciding point
else
return Vertex_handle(); // by cell
}
// Should I mark c's vertices too ?
Conflict_tester_3 tester(p, this);
Vertex_handle v = insert_conflict_3(c, tester);
v->set_point(p);
for( typename std::vector<Vertex_handle>::iterator
it = tester.conflict_vector().begin();
it != tester.conflict_vector().end(); ++it)
{
if ((*it)->cell() == Cell_handle())
{
// vertex has to be deleted
tds().delete_vertex(*it);
}
}
// TODO : manage the hidden points.
return v;
}
case 2:
{
switch (lt) {
case Tr_Base::OUTSIDE_CONVEX_HULL:
case Tr_Base::CELL:
case Tr_Base::FACET:
case Tr_Base::EDGE:
case Tr_Base::VERTEX:
{
if (! in_conflict_2(p, c, 3)) { // new point is hidden
if (lt == Tr_Base::VERTEX)
return c->vertex(li); // by coinciding point
else
return Vertex_handle(); // by face
}
Conflict_tester_2 tester(p, this);
Vertex_handle v = insert_conflict_2(c, tester);
v->set_point(p);
for( typename std::vector<Vertex_handle>::iterator
it = tester.conflict_vector().begin();
it != tester.conflict_vector().end(); ++it)
{
if ((*it)->cell() == Cell_handle())
{
// vertex has to be deleted
tds().delete_vertex(*it);
}
}
return v;
}
case Tr_Base::OUTSIDE_AFFINE_HULL:
{
// if the 2d triangulation is Regular, the 3d
// triangulation will be Regular
return Tr_Base::insert_outside_affine_hull(p);
}
}
}//dim 2
case 1:
{
switch (lt) {
case Tr_Base::OUTSIDE_CONVEX_HULL:
case Tr_Base::EDGE:
case Tr_Base::VERTEX:
{
if (! in_conflict_1(p, c)) { // new point is hidden
if (lt == Tr_Base::VERTEX)
return c->vertex(li); // by coinciding point
else
return Vertex_handle(); // by edge
}
Cell_handle bound[2];
// corresponding index: bound[j]->neighbor(1-j) is in conflict.
std::vector<Vertex_handle> hidden_vertices;
std::vector<Cell_handle> conflicts;
conflicts.push_back(c);
// We get all cells in conflict,
// and remember the 2 external boundaries.
for (int j = 0; j<2; ++j) {
Cell_handle n = c->neighbor(j);
while ( in_conflict_1( p, n) ) {
conflicts.push_back(n);
hidden_vertices.push_back(n->vertex(j));
n = n->neighbor(j);
}
bound[j] = n;
}
// We preserve the order (like the orientation in 2D-3D).
Vertex_handle v = tds().create_vertex();
v->set_point(p);
Cell_handle c0 = tds().create_face(v, bound[0]->vertex(0),
Vertex_handle());
Cell_handle c1 = tds().create_face(bound[1]->vertex(1), v,
Vertex_handle());
tds().set_adjacency(c0, 1, c1, 0);
tds().set_adjacency(bound[0], 1, c0, 0);
tds().set_adjacency(c1, 1, bound[1], 0);
bound[0]->vertex(0)->set_cell(bound[0]);
bound[1]->vertex(1)->set_cell(bound[1]);
v->set_cell(c0);
tds().delete_cells(conflicts.begin(), conflicts.end());
tds().delete_vertices(hidden_vertices.begin(), hidden_vertices.end());
return v;
}
case Tr_Base::OUTSIDE_AFFINE_HULL:
return Tr_Base::insert_outside_affine_hull(p);
case Tr_Base::FACET:
case Tr_Base::CELL:
// impossible in dimension 1
CGAL_assertion(false);
return Vertex_handle();
}
}
case 0:
{
// We need to compare the weights when the points are equal.
if (lt == Tr_Base::VERTEX && in_conflict_0(p, c)) {
CGAL_assertion(li == 0);
c->vertex(li)->set_point(p); // replace by heavier point
}
else
return Tr_Base::insert(p, c);
}
default :
{
return Tr_Base::insert(p, c);
}
}
}
template < class Gt, class Tds >
bool
Regular_triangulation_3<Gt,Tds>::
is_valid(bool verbose, int level) const
{
if ( ! Tr_Base::is_valid(verbose,level) ) {
if (verbose)
std::cerr << "invalid base triangulation" << std::endl;
CGAL_triangulation_assertion(false);
return false;
}
switch ( dimension() ) {
case 3:
{
Finite_cells_iterator it;
for ( it = finite_cells_begin(); it != finite_cells_end(); ++it ) {
is_valid_finite(it, verbose, level);
for (int i=0; i<4; i++ ) {
if ( !is_infinite
(it->neighbor(i)->vertex(it->neighbor(i)->index(it))) ) {
if ( side_of_power_sphere
(it,
it->neighbor(i)->vertex(it->neighbor(i)->index(it))->point())
== ON_BOUNDED_SIDE ) {
if (verbose)
std::cerr << "non-empty sphere " << std::endl;
CGAL_triangulation_assertion(false);
return false;
}
}
}
}
break;
}
case 2:
{
Finite_facets_iterator it;
for ( it = finite_facets_begin(); it != finite_facets_end(); ++it ) {
is_valid_finite((*it).first, verbose, level);
for (int i=0; i<3; i++ ) {
if( !is_infinite
((*it).first->neighbor(i)->vertex( (((*it).first)->neighbor(i))
->index((*it).first))) ) {
if ( side_of_power_circle
( (*it).first, 3,
(*it).first->neighbor(i)->
vertex( (((*it).first)->neighbor(i))
->index((*it).first) )->point() )
== ON_BOUNDED_SIDE ) {
if (verbose)
std::cerr << "non-empty circle " << std::endl;
CGAL_triangulation_assertion(false);
return false;
}
}
}
}
break;
}
case 1:
{
Finite_edges_iterator it;
for ( it = finite_edges_begin(); it != finite_edges_end(); ++it ) {
is_valid_finite((*it).first, verbose, level);
for (int i=0; i<2; i++ ) {
if( !is_infinite
((*it).first->neighbor(i)->vertex( (((*it).first)->neighbor(i))
->index((*it).first))) ) {
if ( side_of_power_segment
( (*it).first,
(*it).first->neighbor(i)->
vertex( (((*it).first)->neighbor(i))
->index((*it).first) )->point() )
== ON_BOUNDED_SIDE ) {
if (verbose)
std::cerr << "non-empty edge " << std::endl;
CGAL_triangulation_assertion(false);
return false;
}
}
}
}
break;
}
}
if (verbose)
std::cerr << "valid Regular triangulation" << std::endl;
return true;
}
CGAL_END_NAMESPACE
#endif // CGAL_REGULAR_TRIANGULATION_3_H