cgal/Generator/doc_tex/Generator_ref/RandomConvexSetTraits_2.tex

53 lines
1.9 KiB
TeX

\renewcommand{\ccRefPageBegin}{\begin{ccAdvanced}}
\renewcommand{\ccRefPageEnd}{\end{ccAdvanced}}
\begin{ccRefConcept}{RandomConvexSetTraits_2}
\ccCreationVariable{t}
\ccTagFullDeclarations
\ccIndexSubitem[C]{random_convex_set}{traits requirements}
\ccDefinition
The concept \ccRefName describes the requirements of the traits
class for the function \ccc{random_convex_set_2}.
\ccHasModels
\ccRefIdfierPage{CGAL::Random_convex_set_traits_2<Kernel>} \\
\ccTypes
\ccNestedType{Point_2}{point class.}
\ccNestedType{FT}{class used for doing computations on point and
vector coordinates (has to fulfill field type requirements).}
\ccNestedType{Sum}{AdaptableBinaryFunction class:
\ccc{Point_2} $\times$ \ccc{Point_2} $\rightarrow$
\ccc{Point_2}. It returns the point that results from adding
the vectors corresponding to both arguments.}
\ccNestedType{Scale}{AdaptableBinaryFunction class:
\ccc{Point_2} $\times$ \ccc{FT} $\rightarrow$
\ccc{Point_2}. \ccc{Scale(p,k)} returns the point that
results from scaling the vector corresponding to \ccc{p} by a
factor of \ccc{k}.}
\ccNestedType{Max_coordinate}{AdaptableUnaryFunction class:
\ccc{Point_2} $\rightarrow$ \ccc{FT}. \ccc{Max_coordinate(p)}
returns the coordinate of \ccc{p} with largest absolute value.}
\ccNestedType{Angle_less}{AdaptableBinaryFunction class:
\ccc{Point_2} $\times$ \ccc{Point_2} $\rightarrow$
\ccc{bool}. It returns \ccc{true}, iff the angle of the
direction corresponding to the first argument with respect to
the positive $x$-axis is less than the angle of the direction
corresponding to the second argument.}
\ccOperations
\ccMemberFunction{Point_2 origin() const;}{return origin (neutral
element for the \ccc{Sum} operation).}
\end{ccRefConcept}
\renewcommand{\ccRefPageBegin}{}
\renewcommand{\ccRefPageEnd}{}