cgal/Surface_mesh_approximation/include/CGAL/vsa_mesh_approximation_trai...

465 lines
17 KiB
C++

#ifndef CGAL_SURFACE_MESH_APPROXIMATION_VSA_TRAITS_H
#define CGAL_SURFACE_MESH_APPROXIMATION_VSA_TRAITS_H
#include <list>
#include <CGAL/Kernel/global_functions.h>
#include <CGAL/squared_distance_3.h>
#include <CGAL/linear_least_squares_fitting_3.h>
#include <boost/graph/graph_traits.hpp>
namespace CGAL
{
/**
* @brief Plane proxy class for the Variational Shape Approximation algorithm.
*
* It is simply a class containing few proxy parameters.
* It is used as the default proxy for the `L21Metric` and `L2Metric`
*
* @tparam TriangleMesh a triangle `FaceGraph`
* @tparam GeomTraits geometric traits
*/
template<typename TriangleMesh,
typename GeomTraits = typename TriangleMesh::Traits>
class PlaneProxy
{
typedef typename GeomTraits::Vector_3 Vector_3;
typedef typename GeomTraits::Plane_3 Plane_3;
typedef typename boost::graph_traits<TriangleMesh>::face_descriptor face_descriptor;
public:
// The proxy seed.
face_descriptor seed;
// The proxy normal used in the `L21Metric`.
Vector_3 normal;
// The fitting plane of the proxy used in the `L2Metric`.
Plane_3 fit_plane;
};
/**
* @brief L21 metric class for the Variational Shape Approximation algorithm.
*
* It is simply a functor that takes a facet and a proxy, returns the L21 error between them.
*
* @tparam TriangleMesh a triangle `FaceGraph`
* @tparam FacetNormalMap a property map containing the facet normals,
and `boost::graph_traits<TriangleMesh>::%face_descriptor` as key type,
GeomTraits::Vector_3 as value type
* @tparam FacetAreaMap a property map containing the facet areas,
and `boost::graph_traits<TriangleMesh>::%face_descriptor` as key type,
GeomTraits::FT as value type
* @tparam GeomTraits geometric traits
* @tparam PlaneProxy a model of `PlaneProxy`
*/
template<typename TriangleMesh,
typename FacetNormalMap,
typename FacetAreaMap,
typename GeomTraits = typename TriangleMesh::Traits,
typename PlaneProxy = CGAL::PlaneProxy<TriangleMesh, GeomTraits> >
class L21Metric
{
typedef typename GeomTraits::FT FT;
typedef typename GeomTraits::Vector_3 Vector_3;
typedef typename GeomTraits::Construct_scaled_vector_3 Construct_scaled_vector_3;
typedef typename GeomTraits::Construct_sum_of_vectors_3 Construct_sum_of_vectors_3;
typedef typename GeomTraits::Compute_scalar_product_3 Compute_scalar_product_3;
typedef typename FacetAreaMap::key_type face_descriptor;
public:
// The type define required by the `ErrorMetric` concept
typedef PlaneProxy Proxy;
// default constructor
L21Metric() {
GeomTraits traits;
scalar_product_functor = traits.compute_scalar_product_3_object();
sum_functor = traits.construct_sum_of_vectors_3_object();
scale_functor = traits.construct_scaled_vector_3_object();
}
// construct L21 metric functor from a facet normal map and a facet area map.
L21Metric(const FacetNormalMap &normal_pmap, const FacetAreaMap &area_pmap)
: normal_pmap(normal_pmap),
area_pmap(area_pmap) {
GeomTraits traits;
scalar_product_functor = traits.compute_scalar_product_3_object();
sum_functor = traits.construct_sum_of_vectors_3_object();
scale_functor = traits.construct_scaled_vector_3_object();
}
// returns L21 error of a facet f to a proxy px.
FT operator()(const face_descriptor &f, const Proxy &px) const {
Vector_3 v = sum_functor(normal_pmap[f], scale_functor(px.normal, FT(-1)));
return area_pmap[f] * scalar_product_functor(v, v);
}
private:
const FacetNormalMap normal_pmap;
const FacetAreaMap area_pmap;
Construct_scaled_vector_3 scale_functor;
Compute_scalar_product_3 scalar_product_functor;
Construct_sum_of_vectors_3 sum_functor;
};
/**
* @brief L21 proxy fitting class for the Variational Shape Approximation algorithm.
*
* It is simply a functor that takes a range of facets, fitting the proxy parameters.
*
* @tparam TriangleMesh a triangle `FaceGraph`
* @tparam FacetNormalMap a property map containing the facet normals,
and `boost::graph_traits<TriangleMesh>::%face_descriptor` as key type,
GeomTraits::Vector_3 as value type
* @tparam FacetAreaMap a property map containing the facet areas,
and `boost::graph_traits<TriangleMesh>::%face_descriptor` as key type,
GeomTraits::FT as value type
* @tparam GeomTraits geometric traits
* @tparam PlaneProxy a model of `PlaneProxy`
*/
template<typename TriangleMesh,
typename FacetNormalMap,
typename FacetAreaMap,
typename GeomTraits = typename TriangleMesh::Traits,
typename PlaneProxy = CGAL::PlaneProxy<TriangleMesh, GeomTraits> >
class L21ProxyFitting
{
typedef typename GeomTraits::FT FT;
typedef typename GeomTraits::Vector_3 Vector_3;
typedef typename GeomTraits::Construct_scaled_vector_3 Construct_scaled_vector_3;
typedef typename GeomTraits::Construct_sum_of_vectors_3 Construct_sum_of_vectors_3;
public:
// The type define required by the `ErrorMetric` concept
typedef PlaneProxy Proxy;
// default constructor
L21ProxyFitting() {
GeomTraits traits;
sum_functor = traits.construct_sum_of_vectors_3_object();
scale_functor = traits.construct_scaled_vector_3_object();
}
// construct L21 proxy fitting functor from a facet normal map and a facet area map.
L21ProxyFitting(const FacetNormalMap &normal_pmap, const FacetAreaMap &area_pmap)
: normal_pmap(normal_pmap), area_pmap(area_pmap) {
GeomTraits traits;
sum_functor = traits.construct_sum_of_vectors_3_object();
scale_functor = traits.construct_scaled_vector_3_object();
}
// returns the proxy fitted from the facets from beg to end.
template<typename FacetIterator>
Proxy operator()(const FacetIterator beg, const FacetIterator end) const {
CGAL_assertion(beg != end);
// fitting normal
Vector_3 norm = CGAL::NULL_VECTOR;
for (FacetIterator fitr = beg; fitr != end; ++fitr) {
norm = sum_functor(norm,
scale_functor(normal_pmap[*fitr], area_pmap[*fitr]));
}
norm = scale_functor(norm,
FT(1.0 / std::sqrt(CGAL::to_double(norm.squared_length()))));
// construct proxy
Proxy px;
px.normal = norm;
return px;
}
private:
const FacetNormalMap normal_pmap;
const FacetAreaMap area_pmap;
Construct_scaled_vector_3 scale_functor;
Construct_sum_of_vectors_3 sum_functor;
};
/**
* @brief Area weighted plane fitting class for the Variational Shape Approximation algorithm.
*
* It is simply a functor class that fits a plane from a range of facets.
*
* @tparam TriangleMesh a triangle `FaceGraph`
* @tparam VertexPointMap a property map containing the vertex points,
and `boost::graph_traits<TriangleMesh>::%vertex_descriptor` as key type,
GeomTraits::Point_3 as value type
* @tparam GeomTraits geometric traits
*/
template<typename TriangleMesh,
typename VertexPointMap
= typename boost::property_map<TriangleMesh, boost::vertex_point_t>::type,
typename GeomTraits = typename TriangleMesh::Traits>
class PlaneFitting
{
typedef typename GeomTraits::FT FT;
typedef typename GeomTraits::Point_3 Point_3;
typedef typename GeomTraits::Vector_3 Vector_3;
typedef typename GeomTraits::Plane_3 Plane_3;
typedef typename GeomTraits::Construct_vector_3 Construct_vector_3;
typedef typename GeomTraits::Construct_scaled_vector_3 Construct_scaled_vector_3;
typedef typename GeomTraits::Construct_sum_of_vectors_3 Construct_sum_of_vectors_3;
typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor halfedge_descriptor;
public:
// construct plane fitting functor from a triangle mesh and its vertex point map.
PlaneFitting(const TriangleMesh &_mesh, const VertexPointMap &_point_pmap)
: mesh(_mesh), point_pmap(_point_pmap) {
GeomTraits traits;
vector_functor = traits.construct_vector_3_object();
sum_functor = traits.construct_sum_of_vectors_3_object();
scale_functor = traits.construct_scaled_vector_3_object();
}
// construct plane fitting functor from a triangle mesh.
PlaneFitting(const TriangleMesh &_mesh)
: mesh(_mesh),
point_pmap(get(boost::vertex_point, const_cast<TriangleMesh &>(_mesh))) {
GeomTraits traits;
vector_functor = traits.construct_vector_3_object();
sum_functor = traits.construct_sum_of_vectors_3_object();
scale_functor = traits.construct_scaled_vector_3_object();
}
// fitting a plane from facets in range beg to end.
template<typename FacetIterator>
Plane_3 operator()(const FacetIterator &beg, const FacetIterator &end) const {
CGAL_assertion(beg != end);
// area average normal and centroid
Vector_3 norm = CGAL::NULL_VECTOR;
Vector_3 cent = CGAL::NULL_VECTOR;
FT sum_area(0);
for (FacetIterator fitr = beg; fitr != end; ++fitr) {
const halfedge_descriptor he = halfedge(*fitr, mesh);
const Point_3 p0 = point_pmap[source(he, mesh)];
const Point_3 p1 = point_pmap[target(he, mesh)];
const Point_3 p2 = point_pmap[target(next(he, mesh), mesh)];
Vector_3 vec = vector_functor(CGAL::ORIGIN, CGAL::centroid(p0, p1, p2));
FT farea(std::sqrt(CGAL::to_double(CGAL::squared_area(p0, p1, p2))));
Vector_3 fnorm = CGAL::unit_normal(p0, p1, p2);
norm = sum_functor(norm, scale_functor(fnorm, farea));
cent = sum_functor(cent, scale_functor(vec, farea));
sum_area += farea;
}
norm = scale_functor(norm,
FT(1.0 / std::sqrt(CGAL::to_double(norm.squared_length()))));
cent = scale_functor(cent, FT(1) / sum_area);
return Plane_3(CGAL::ORIGIN + cent, norm);
}
private:
const TriangleMesh &mesh;
const VertexPointMap point_pmap;
Construct_vector_3 vector_functor;
Construct_scaled_vector_3 scale_functor;
Construct_sum_of_vectors_3 sum_functor;
};
/**
* @brief L2 metric class for the Variational Shape Approximation algorithm.
*
* It is simply a functor that takes a facet and a proxy, returns the L2 error between them.
*
* @tparam TriangleMesh a triangle `FaceGraph`
* @tparam FacetAreaMap a property map containing the facet areas,
and `boost::graph_traits<TriangleMesh>::%face_descriptor` as key type,
GeomTraits::FT as value type
* @tparam VertexPointMap a property map containing the vertex points,
and `boost::graph_traits<TriangleMesh>::%vertex_descriptor` as key type,
GeomTraits::Point_3 as value type
* @tparam GeomTraits geometric traits
* @tparam PlaneProxy a model of `PlaneProxy`
*/
template<typename TriangleMesh,
typename FacetAreaMap,
typename VertexPointMap
= typename boost::property_map<TriangleMesh, boost::vertex_point_t>::type,
typename GeomTraits = typename TriangleMesh::Traits,
typename PlaneProxy = CGAL::PlaneProxy<TriangleMesh, GeomTraits> >
class L2Metric
{
typedef typename GeomTraits::FT FT;
typedef typename GeomTraits::Point_3 Point_3;
typedef typename boost::graph_traits<TriangleMesh>::face_descriptor face_descriptor;
typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor halfedge_descriptor;
public:
// The type define required by the `ErrorMetric` concept
typedef PlaneProxy Proxy;
// default constructor
L2Metric() : mesh(nullptr) {}
// construct L2 metric functor from a triangle mesh, a facet area map and the vertex point map.
L2Metric(const TriangleMesh &_mesh,
const FacetAreaMap &_area_pmap,
const VertexPointMap &_point_pmap)
: mesh(&_mesh), area_pmap(_area_pmap), point_pmap(_point_pmap) {}
// construct L2 metric functor from a triangle mesh and a facet area map.
L2Metric(const TriangleMesh &_mesh,
const FacetAreaMap &_area_pmap)
: mesh(&_mesh), area_pmap(_area_pmap),
point_pmap(get(boost::vertex_point, const_cast<TriangleMesh &>(_mesh))) {}
// returns the l2 fitting error of a facet f to proxy px.
FT operator()(const face_descriptor &f, const PlaneProxy &px) const {
halfedge_descriptor he = halfedge(f, *mesh);
const Point_3 &p0 = point_pmap[source(he, *mesh)];
const Point_3 &p1 = point_pmap[target(he, *mesh)];
const Point_3 &p2 = point_pmap[target(next(he, *mesh), *mesh)];
FT sq_d0 = CGAL::squared_distance(p0, px.fit_plane);
FT sq_d1 = CGAL::squared_distance(p1, px.fit_plane);
FT sq_d2 = CGAL::squared_distance(p2, px.fit_plane);
FT d0(std::sqrt(CGAL::to_double(sq_d0)));
FT d1(std::sqrt(CGAL::to_double(sq_d1)));
FT d2(std::sqrt(CGAL::to_double(sq_d2)));
return (sq_d0 + sq_d1 + sq_d2 + d0 * d1 + d1 * d2 + d2 * d0) * area_pmap[f] / FT(6);
}
private:
const FacetAreaMap area_pmap;
const VertexPointMap point_pmap;
const TriangleMesh *mesh;
};
/**
* @brief L2 proxy fitting class for the Variational Shape Approximation algorithm.
*
* It is simply a functor that takes a range of facets, fitting the L2 proxy parameters.
* It uses the PCA algorithm to fit the proxy parameters.
*
* @tparam TriangleMesh a triangle `FaceGraph`
* @tparam VertexPointMap a property map containing the vertex points,
and `boost::graph_traits<TriangleMesh>::%vertex_descriptor` as key type,
GeomTraits::Point_3 as value type
* @tparam GeomTraits geometric traits
* @tparam PlaneProxy a model of `PlaneProxy`
*/
template<typename TriangleMesh,
typename VertexPointMap
= typename boost::property_map<TriangleMesh, boost::vertex_point_t>::type,
typename GeomTraits = typename TriangleMesh::Traits,
typename PlaneProxy = CGAL::PlaneProxy<TriangleMesh, GeomTraits> >
class L2ProxyFitting
{
private:
typedef typename GeomTraits::Point_3 Point_3;
typedef typename GeomTraits::Triangle_3 Triangle_3;
typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor halfedge_descriptor;
public:
// The type define required by the `ErrorMetric` concept
typedef PlaneProxy Proxy;
// default constructor
L2ProxyFitting() : mesh(nullptr) {}
// construct L2 proxy fitting functor from a triangle mesh and the vertex point map.
L2ProxyFitting(const TriangleMesh &_mesh, const VertexPointMap &_point_pmap)
: mesh(&_mesh), point_pmap(_point_pmap) {}
// construct L2 proxy fitting functor from a triangle mesh.
L2ProxyFitting(const TriangleMesh &_mesh)
: mesh(&_mesh),
point_pmap(get(boost::vertex_point, const_cast<TriangleMesh &>(_mesh))) {}
// returns the proxy fitted from a range of facets.
template<typename FacetIterator>
Proxy operator()(const FacetIterator beg, const FacetIterator end) const {
CGAL_assertion(beg != end);
std::list<Triangle_3> tris;
for (FacetIterator fitr = beg; fitr != end; ++fitr) {
halfedge_descriptor he = halfedge(*fitr, *mesh);
const Point_3 &p0 = point_pmap[source(he, *mesh)];
const Point_3 &p1 = point_pmap[target(he, *mesh)];
const Point_3 &p2 = point_pmap[target(next(he, *mesh), *mesh)];
tris.push_back(Triangle_3(p0, p1, p2));
}
// construct and fit proxy plane
Proxy px;
CGAL::linear_least_squares_fitting_3(
tris.begin(),
tris.end(),
px.fit_plane,
CGAL::Dimension_tag<2>());
return px;
}
private:
const TriangleMesh *mesh;
const VertexPointMap point_pmap;
};
/**
* @brief PCA plane fitting class.
*
* It is simply a functor class that uses the PCA algorithm to fit a plane from a range of facets.
*
* @tparam TriangleMesh a triangle `FaceGraph`
* @tparam VertexPointMap a property map containing the vertex points,
and `boost::graph_traits<TriangleMesh>::%vertex_descriptor` as key type,
GeomTraits::Point_3 as value type
* @tparam GeomTraits geometric traits
*/
template<typename TriangleMesh,
typename VertexPointMap
= typename boost::property_map<TriangleMesh, boost::vertex_point_t>::type,
typename GeomTraits = typename TriangleMesh::Traits>
class PCAPlaneFitting
{
typedef typename GeomTraits::Point_3 Point_3;
typedef typename GeomTraits::Plane_3 Plane_3;
typedef typename GeomTraits::Triangle_3 Triangle_3;
typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor halfedge_descriptor;
public:
// construct PCA plane fitting functor from a triangle mesh and the vertex point map.
PCAPlaneFitting(const TriangleMesh &_mesh, const VertexPointMap &_point_pmap)
: mesh(_mesh), point_pmap(_point_pmap) {}
// construct PCA plane fitting functor from a triangle mesh.
PCAPlaneFitting(const TriangleMesh &_mesh)
: mesh(_mesh),
point_pmap(get(boost::vertex_point, const_cast<TriangleMesh &>(_mesh))) {}
// returns a plane fitted from facets in range beg to end by the PCA algorithm.
template<typename FacetIterator>
Plane_3 operator()(const FacetIterator beg, const FacetIterator end) const {
CGAL_assertion(beg != end);
std::list<Triangle_3> tris;
for (FacetIterator fitr = beg; fitr != end; ++fitr) {
halfedge_descriptor he = halfedge(*fitr, mesh);
const Point_3 &p0 = point_pmap[source(he, mesh)];
const Point_3 &p1 = point_pmap[target(he, mesh)];
const Point_3 &p2 = point_pmap[target(next(he, mesh), mesh)];
tris.push_back(Triangle_3(p0, p1, p2));
}
// construct and fit proxy plane
Plane_3 fit_plane;
CGAL::linear_least_squares_fitting_3(
tris.begin(),
tris.end(),
fit_plane,
CGAL::Dimension_tag<2>());
return fit_plane;
}
private:
const TriangleMesh &mesh;
const VertexPointMap point_pmap;
};
} // end namespace CGAL
#endif // CGAL_SURFACE_MESH_APPROXIMATION_VSA_TRAITS_H