cgal/Algebraic_foundations/include/CGAL/Rational_traits.h

108 lines
2.8 KiB
C++

// Copyright (c) 2006-2007 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Michael Hemmer <hemmer@mpi-inf.mpg.de>
//
// =============================================================================
// This file is for backward compatibility
// Rational_traits will be replaced by Fraction_traits
#ifndef CGAL_RATIONAL_TRAITS_H
#define CGAL_RATIONAL_TRAITS_H
#include <CGAL/number_type_basic.h>
#include <CGAL/Fraction_traits.h>
#include <CGAL/is_convertible.h>
#include <type_traits>
namespace CGAL {
namespace internal{
template <class Rational, bool >
struct Rational_traits_base
{
typedef Rational RT;
const RT& numerator (const Rational& r) const { return r; }
RT denominator (const Rational&) const { return RT(1); }
template<class T>
Rational make_rational(const T & x) const
{ return x; }
template<class T, class U>
Rational make_rational(const std::pair<T, U> & x) const
{ return make_rational(x.first, x.second); }
Rational make_rational(const RT & n, const RT & d) const
{ return n / d; }
};
template <class Rational>
struct Rational_traits_base<Rational, true>
{
private:
typedef Fraction_traits<Rational> FT;
typedef typename FT::Decompose Decompose;
typedef typename FT::Compose Compose;
public:
typedef typename FT::Numerator_type RT;
RT numerator (const Rational& r) const {
RT num,den;
Decompose()(r,num,den);
return num;
}
RT denominator (const Rational& r) const {
RT num,den;
Decompose()(r,num,den);
return den;
}
template<class T>
Rational make_rational(const T & x) const
{ return x; }
template<class T, class U>
Rational make_rational(const std::pair<T, U> & x) const
{ return make_rational(x.first, x.second); }
template<class N,class D>
Rational make_rational(const N& n, const D& d,std::enable_if_t<is_implicit_convertible<N,RT>::value&&is_implicit_convertible<D,RT>::value,int> = 0) const
{ return Compose()(n,d); }
template<class N,class D>
Rational make_rational(const N& n, const D& d,std::enable_if_t<!is_implicit_convertible<N,RT>::value||!is_implicit_convertible<D,RT>::value,int> = 0) const
{ return n/d; } // Assume that n or d is already a fraction
};
}// namespace internal
// use Fraction_traits if Is_fraction && Num and Den are the same
template <class T>
class Rational_traits
: public internal::Rational_traits_base<T,
::std::is_same<typename Fraction_traits<T>::Is_fraction,Tag_true>::value
&&
::std::is_same<
typename Fraction_traits<T>::Numerator_type,
typename Fraction_traits<T>::Denominator_type
>::value >
{};
} //namespace CGAL
#endif // CGAL_RATIONAL_TRAITS_H
// EOF