mirror of https://github.com/CGAL/cgal
1278 lines
33 KiB
C++
1278 lines
33 KiB
C++
// ============================================================================
|
|
//
|
|
// Copyright (c) 1998 The CGAL Consortium
|
|
//
|
|
// This software and related documentation is part of an INTERNAL release
|
|
// of the Computational Geometry Algorithms Library (CGAL). It is not
|
|
// intended for general use.
|
|
//
|
|
// ----------------------------------------------------------------------------
|
|
//
|
|
// release :
|
|
// release_date :
|
|
//
|
|
// file : include/CGAL/Triangulation_data_structure_3.h
|
|
// revision : $Revision$
|
|
// author(s) : Monique Teillaud <Monique.Teillaud@sophia.inria.fr>
|
|
//
|
|
// coordinator : Mariette Yvinec <Mariette.Yvinec@sophia.inria.fr>
|
|
//
|
|
// ============================================================================
|
|
//
|
|
// combinatorial triangulation of the boundary of a polytope
|
|
// of dimension d in dimension d+1
|
|
// for -1 <= d <= 3
|
|
//
|
|
// ============================================================================
|
|
|
|
#ifndef CGAL_TRIANGULATION_DATA_STRUCTURE_3_H
|
|
#define CGAL_TRIANGULATION_DATA_STRUCTURE_3_H
|
|
|
|
#include <pair.h>
|
|
#include <CGAL/triple.h>
|
|
#include <list.h>
|
|
#include <map.h>
|
|
#include <set.h>
|
|
|
|
#include <CGAL/triangulation_assertions.h>
|
|
#include <CGAL/Triangulation_short_names_3.h>
|
|
|
|
#include <CGAL/Triangulation_vertex_base_3.h>
|
|
#include <CGAL/Triangulation_cell_base_3.h>
|
|
|
|
#include <CGAL/Triangulation_ds_cell_3.h>
|
|
#include <CGAL/Triangulation_ds_vertex_3.h>
|
|
|
|
#include <CGAL/Triangulation_ds_iterators_3.h>
|
|
#include <CGAL/Triangulation_ds_circulators_3.h>
|
|
|
|
|
|
template <class Tds>
|
|
class CGAL_Triangulation_ds_cell_iterator_3;
|
|
template <class Tds>
|
|
class CGAL_Triangulation_ds_facet_iterator_3;
|
|
template <class Tds>
|
|
class CGAL_Triangulation_ds_vertex_iterator_3;
|
|
template <class Tds>
|
|
class CGAL_Triangulation_ds_cell_circulator_3;
|
|
|
|
#include <vector.h>
|
|
|
|
template <class Vb, class Cb>
|
|
class CGAL_Triangulation_data_structure_3
|
|
{
|
|
|
|
friend istream& operator>> CGAL_NULL_TMPL_ARGS
|
|
(istream&, CGAL_Triangulation_data_structure_3<Vb,Cb>&);
|
|
|
|
friend void CGAL_Triangulation_ds_cell_3<Vb,Cb>::add_list
|
|
(CGAL_Triangulation_data_structure_3<Vb,Cb>&);
|
|
|
|
friend class CGAL_Triangulation_ds_cell_iterator_3
|
|
<CGAL_Triangulation_data_structure_3<Vb,Cb> >;
|
|
friend class CGAL_Triangulation_ds_facet_iterator_3
|
|
<CGAL_Triangulation_data_structure_3<Vb,Cb> >;
|
|
friend class CGAL_Triangulation_ds_edge_iterator_3
|
|
<CGAL_Triangulation_data_structure_3<Vb,Cb> >;
|
|
friend class CGAL_Triangulation_ds_vertex_iterator_3
|
|
<CGAL_Triangulation_data_structure_3<Vb,Cb> >;
|
|
|
|
public:
|
|
|
|
typedef CGAL_Triangulation_ds_vertex_3<Vb,Cb> Vertex;
|
|
typedef CGAL_Triangulation_ds_cell_3<Vb,Cb> Cell;
|
|
typedef pair<Cell*, int> Facet;
|
|
typedef CGAL_triple<Cell*, int, int> Edge;
|
|
|
|
typedef CGAL_Triangulation_data_structure_3<Vb,Cb> Tds;
|
|
|
|
typedef CGAL_Triangulation_ds_cell_iterator_3<Tds> Cell_iterator;
|
|
typedef CGAL_Triangulation_ds_facet_iterator_3<Tds> Facet_iterator;
|
|
typedef CGAL_Triangulation_ds_edge_iterator_3<Tds> Edge_iterator;
|
|
typedef CGAL_Triangulation_ds_vertex_iterator_3<Tds> Vertex_iterator;
|
|
typedef CGAL_Triangulation_ds_cell_circulator_3<Tds> Cell_circulator;
|
|
|
|
// CONSTRUCTORS
|
|
|
|
inline
|
|
CGAL_Triangulation_data_structure_3()
|
|
: _dimension(-2), _number_of_vertices(0), _list_of_cells()
|
|
{}
|
|
|
|
CGAL_Triangulation_data_structure_3(const Vertex & v)
|
|
: _dimension(-2), _number_of_vertices(0), _list_of_cells()
|
|
{
|
|
insert_outside_affine_hull(&v);
|
|
// CGAL_triangulation_postcondition( is_valid() );
|
|
}
|
|
|
|
inline
|
|
CGAL_Triangulation_data_structure_3(const Tds & tds)
|
|
: _number_of_vertices(0), _list_of_cells()
|
|
// _number_of_vertices is set to 0 so that clear() in copy_tds() works
|
|
{
|
|
copy_tds(tds);
|
|
}
|
|
|
|
// DESTRUCTOR
|
|
|
|
~CGAL_Triangulation_data_structure_3()
|
|
{
|
|
clear();
|
|
}
|
|
|
|
// ASSIGNEMENT
|
|
|
|
inline
|
|
Tds & operator= (const Tds & tds)
|
|
{
|
|
copy_tds(tds);
|
|
return *this;
|
|
}
|
|
|
|
// ACCESS FUNCTIONS
|
|
|
|
inline
|
|
int number_of_vertices() const {return _number_of_vertices;}
|
|
|
|
inline
|
|
int dimension() const {return _dimension;}
|
|
|
|
// USEFUL CONSTANT TIME FUNCTIONS
|
|
|
|
// int number_of_cells() const { }
|
|
|
|
// SETTING
|
|
// to be protected ?
|
|
|
|
inline
|
|
void set_number_of_vertices(int n) { _number_of_vertices = n; }
|
|
|
|
inline
|
|
void set_dimension(int n) { _dimension = n; }
|
|
|
|
// MODIFY
|
|
|
|
// void flip(Cell* f, int i)
|
|
// {
|
|
// }
|
|
|
|
//INSERTION
|
|
|
|
void insert_outside_affine_hull(Vertex* v, // new vertex
|
|
Vertex* star = NULL,
|
|
bool reorient = false)
|
|
// star = vertex from which we triangulate the facet of the incremented dimension
|
|
// ( geometrically : star = infinite vertex )
|
|
// = Null only used to insert the 1st vertex (dimension -2 to dimension -1)
|
|
|
|
// changes the dimension
|
|
|
|
// if (reorient) the orientation of the cells is modified
|
|
{ // insert()
|
|
CGAL_triangulation_precondition( v != NULL );
|
|
|
|
Cell* c;
|
|
Cell* d;
|
|
Cell* e;
|
|
int i, j;
|
|
|
|
set_number_of_vertices( number_of_vertices()+1 );
|
|
set_dimension( dimension()+1 );
|
|
// this is set before the switch, so that it becomes allowed to reorient
|
|
// new facets or cells by iterating on them (otherwise the dimension is to small
|
|
|
|
switch ( dimension() ) {
|
|
|
|
case -1:
|
|
// insertion of the first vertex
|
|
// ( geometrically : infinite vertex )
|
|
{
|
|
c = new Cell( *this,
|
|
v, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL );
|
|
v->set_cell(c);
|
|
break;
|
|
}
|
|
|
|
case 0:
|
|
// insertion of the second vertex
|
|
// ( geometrically : first finite vertex )
|
|
{
|
|
CGAL_triangulation_precondition( star != NULL );
|
|
d = new Cell( *this,
|
|
v, NULL, NULL, NULL,
|
|
star->cell(), NULL, NULL, NULL );
|
|
v->set_cell(d);
|
|
star->cell()->set_neighbor(0,d);
|
|
break;
|
|
}
|
|
|
|
case 1:
|
|
// insertion of the third vertex
|
|
// ( geometrically : second finite vertex )
|
|
{
|
|
CGAL_triangulation_precondition( star != NULL );
|
|
c = star->cell();
|
|
d = c->neighbor(0);
|
|
// the following code could be shortened :
|
|
// if (reorient) { i=0; j=1 }
|
|
// else { i=1; j=0 }
|
|
// and then use i and j instead of 0 and 1
|
|
if (reorient) {
|
|
c->set_vertex(0,d->vertex(0));
|
|
c->set_vertex(1,star);
|
|
c->set_neighbor(1,d);
|
|
d->set_vertex(1,d->vertex(0));
|
|
d->set_vertex(0,v);
|
|
d->set_neighbor(0,c);
|
|
e = new Cell( *this,
|
|
star, v, NULL, NULL,
|
|
d, c, NULL, NULL );
|
|
c->set_neighbor(0,e);
|
|
d->set_neighbor(1,e);
|
|
}
|
|
else {
|
|
c->set_vertex(1,d->vertex(0));
|
|
d->set_vertex(1,v);
|
|
d->set_neighbor(1,c);
|
|
e = new Cell( *this,
|
|
v, star, NULL, NULL,
|
|
c, d, NULL, NULL );
|
|
c->set_neighbor(1,e);
|
|
d->set_neighbor(0,e);
|
|
}
|
|
|
|
v->set_cell(d);
|
|
break;
|
|
}
|
|
|
|
case 2:
|
|
// general case : 4th vertex ( geometrically : 3rd finite vertex )
|
|
// degenerate cases geometrically : 1st non collinear vertex
|
|
{
|
|
CGAL_triangulation_precondition( star != NULL );
|
|
|
|
c = star->cell();
|
|
i = c->index(star); // i== 0 or 1
|
|
j = (1-i);
|
|
d = c->neighbor(j);
|
|
|
|
c->set_vertex(2,v);
|
|
|
|
e = c->neighbor(i);
|
|
Cell* cnew = c;
|
|
Cell* enew;
|
|
|
|
while( e != d ){
|
|
enew = new Cell( *this );
|
|
enew->set_vertex(i,e->vertex(j));
|
|
enew->set_vertex(j,e->vertex(i));
|
|
enew->set_vertex(2,star);
|
|
|
|
enew->set_neighbor(i,cnew);
|
|
cnew->set_neighbor(j,enew);
|
|
// false at the first iteration of the loop where it should be neighbor 2
|
|
// it is corrected after the loop
|
|
enew->set_neighbor(2,e);
|
|
// neighbor j will be set during next iteration of the loop
|
|
|
|
e->set_vertex(2,v);
|
|
e->set_neighbor(2,enew);
|
|
|
|
c = e;
|
|
e = e->neighbor(i);
|
|
cnew = enew;
|
|
}
|
|
|
|
d->set_vertex(2,v);
|
|
d->set_neighbor(2,enew);
|
|
enew->set_neighbor(j,d);
|
|
|
|
// corrections for star->cell() :
|
|
c = star->cell();
|
|
c->set_neighbor(2,c->neighbor(i)->neighbor(2));
|
|
c->set_neighbor(j,d);
|
|
|
|
v->set_cell(d);
|
|
|
|
if (reorient) {
|
|
// reorientation of all the cells
|
|
Vertex* vtmp;
|
|
Cell* ctmp;
|
|
Facet_iterator fit = facets_begin();
|
|
|
|
while(fit != facets_end()) {
|
|
vtmp = (*fit).first->vertex(1);
|
|
(*fit).first->set_vertex(1,(*fit).first->vertex(0));
|
|
(*fit).first->set_vertex(0,vtmp);
|
|
|
|
ctmp = (*fit).first->neighbor(1);
|
|
(*fit).first->set_neighbor(1,(*fit).first->neighbor(0));
|
|
(*fit).first->set_neighbor(0,ctmp);
|
|
|
|
++fit;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 3:
|
|
// general case : 5th vertex ( geometrically : 4th finite vertex )
|
|
// degenerate cases : geometrically 1st non coplanar vertex
|
|
{
|
|
CGAL_triangulation_precondition( star != NULL );
|
|
|
|
Cell* old_cells = list_of_cells()._next_cell;
|
|
// used to store the beginning of the list of cells,
|
|
// which will be past end for the list of new cell
|
|
// in order to be able to traverse only the new cells
|
|
// to find the missing neighbors (we know that new Cell() puts
|
|
// each new cell at the beginning of the list).
|
|
|
|
Cell* cnew;
|
|
Cell_iterator it = cells_begin();
|
|
// allowed since the dimension has already been set to 3
|
|
|
|
v->set_cell(&(*it)); // ok since there is at list one ``cell''
|
|
while (it != cells_end()) {
|
|
it->set_vertex(3,v);
|
|
if ( ! it->has_vertex(star) ) {
|
|
cnew = new Cell( *this,
|
|
it->vertex(0),it->vertex(2),
|
|
it->vertex(1),star,
|
|
NULL,NULL,NULL,&(*it));
|
|
it->set_neighbor(3,cnew);
|
|
}
|
|
++it;
|
|
}
|
|
|
|
it = cells_begin();
|
|
Cell* n;
|
|
Cell* c;
|
|
// traversal of the new cells only, to add missing neighbors
|
|
while ( &(*it) != old_cells ) {
|
|
n = it->neighbor(3); // opposite to star
|
|
for ( int i=0; i<3; i++ ) {
|
|
int j;
|
|
if ( i==0 ) j=0;
|
|
else j=3-i; // vertex 1 and vertex 2 are always switched when
|
|
// creating a new cell (see above)
|
|
if ( ( c = n->neighbor(i)->neighbor(3) ) != NULL ) {
|
|
// i.e. star is not a vertex of n->neighbor(i)
|
|
it->set_neighbor(j,c);
|
|
// opposite relation will be set when it arrives on c
|
|
// this avoids to look for the correct index
|
|
// and to test whether *it already has neighbor i
|
|
}
|
|
else {
|
|
// star is a vertex of n->neighbor(i)
|
|
it->set_neighbor(j,n->neighbor(i));
|
|
n->neighbor(i)->set_neighbor(3,&(*it)); // neighbor opposite to v
|
|
}
|
|
}
|
|
++it;
|
|
}
|
|
|
|
// reorientation of all the cells
|
|
if (reorient) {
|
|
Vertex* vtmp;
|
|
Cell* ctmp;
|
|
it = cells_begin();
|
|
|
|
while ( it != cells_end() ) {
|
|
vtmp = it->vertex(1);
|
|
it->set_vertex(1,it->vertex(0));
|
|
it->set_vertex(0,vtmp);
|
|
|
|
ctmp = it->neighbor(1);
|
|
it->set_neighbor(1,it->neighbor(0));
|
|
it->set_neighbor(0,ctmp);
|
|
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
}// end switch
|
|
|
|
}
|
|
// end insert_outside_affine_hull
|
|
|
|
void insert_in_edge(Vertex* v, Cell* c, int i, int j)
|
|
{ // inserts v in the edge of cell c with vertices i and j
|
|
CGAL_triangulation_precondition( v != NULL && c != NULL );
|
|
CGAL_triangulation_precondition( i != j );
|
|
CGAL_triangulation_precondition( dimension() >= 1 );
|
|
|
|
Cell* cnew;
|
|
Cell* dnew;
|
|
|
|
switch ( dimension() ) {
|
|
|
|
case 1:
|
|
{
|
|
CGAL_triangulation_precondition( (i==0 || i==1) && (j==0 || j==1) );
|
|
cnew = new Cell(*this,
|
|
v,c->vertex(1),NULL,NULL,
|
|
c->neighbor(0),c,NULL,NULL);
|
|
c->vertex(1)->set_cell(cnew);
|
|
c->set_vertex(1,v);
|
|
c->neighbor(0)->set_neighbor(1,cnew);
|
|
c->set_neighbor(0,cnew);
|
|
|
|
v->set_cell(cnew);
|
|
break;
|
|
}
|
|
|
|
case 2:
|
|
{
|
|
CGAL_triangulation_precondition( i>=0 && i<=2 && j>=0 && j<=2 );
|
|
int k=3-i-j; // index of the third vertex of the facet
|
|
Cell* d = c->neighbor(k);
|
|
int kd = d->index(c);
|
|
int id = d->index(c->vertex(i));
|
|
int jd = d->index(c->vertex(j));
|
|
|
|
cnew = new Cell(*this);
|
|
cnew->set_vertex(i,c->vertex(i));
|
|
c->vertex(i)->set_cell(cnew);
|
|
cnew->set_vertex(j,v);
|
|
cnew->set_vertex(k,c->vertex(k));
|
|
c->set_vertex(i,v);
|
|
|
|
dnew = new Cell(*this);
|
|
dnew->set_vertex(id,d->vertex(id));
|
|
// d->vertex(id)->cell() is cnew OK
|
|
dnew->set_vertex(jd,v);
|
|
dnew->set_vertex(kd,d->vertex(kd));
|
|
d->set_vertex(id,v);
|
|
|
|
cnew->set_neighbor(i,c);
|
|
Cell* nj = c->neighbor(j);
|
|
cnew->set_neighbor(j,nj);
|
|
nj->set_neighbor(nj->index(c),cnew);
|
|
c->set_neighbor(j,cnew);
|
|
cnew->set_neighbor(k,dnew);
|
|
|
|
dnew->set_neighbor(id,d);
|
|
nj = d->neighbor(jd);
|
|
dnew->set_neighbor(jd,nj);
|
|
nj->set_neighbor(nj->index(d),dnew);
|
|
d->set_neighbor(jd,dnew);
|
|
dnew->set_neighbor(kd,cnew);
|
|
|
|
v->set_cell(cnew);
|
|
break;
|
|
}
|
|
|
|
case 3:
|
|
{
|
|
CGAL_triangulation_precondition( i>=0 && i<=3 && j>=0 && j<=3 );
|
|
Vertex* vi=c->vertex(i);
|
|
Vertex* vj=c->vertex(j);
|
|
|
|
cnew = new Cell(*this, c);
|
|
c->set_vertex(j,v);
|
|
vj->set_cell(cnew);
|
|
v->set_cell(c);
|
|
c->neighbor(i)->set_neighbor(c->neighbor(i)->index(c),cnew);
|
|
c->set_neighbor(i,cnew);
|
|
cnew->set_vertex(i,v);
|
|
cnew->set_neighbor(j,c);
|
|
|
|
// the code here duplicates a large part of the code
|
|
// of CGAL_Triangulation_ds_cell_circulator_3
|
|
|
|
int k=Cell_circulator::other(i,j);
|
|
|
|
Cell* ctmp = c->neighbor(k);
|
|
Cell* cprev = c;
|
|
Cell* cnewprev = cnew;
|
|
|
|
while ( ctmp != c ) {
|
|
// the current cell is duplicated. vertices and neighbors i and j
|
|
// are updated during the traversal.
|
|
// uses the field prev of the circulator
|
|
i = ctmp->index(vi);
|
|
j = ctmp->index(vj);
|
|
cnew = new Cell(*this, ctmp);
|
|
// v will become vertex j of c
|
|
// and vertex i of cnew
|
|
ctmp->set_vertex(j,v);
|
|
ctmp->neighbor(i)->set_neighbor(ctmp->neighbor(i)->index(ctmp),cnew);
|
|
ctmp->set_neighbor(i,cnew);
|
|
cnew->set_vertex(i,v);
|
|
cnew->set_neighbor(j,ctmp);
|
|
|
|
// neighbor relations of all cells are used
|
|
// to find relations between new cells
|
|
cnew->set_neighbor(ctmp->index(cprev),cnewprev);
|
|
cnewprev->set_neighbor(cprev->index(ctmp),cnew);
|
|
|
|
cnewprev = cnew;
|
|
k=Cell_circulator::other(i,j);
|
|
if ( ctmp->neighbor(k) == cprev ) {
|
|
cprev = ctmp;
|
|
ctmp = ctmp->neighbor(6-i-j-k);
|
|
}
|
|
else {
|
|
cprev = ctmp;
|
|
ctmp = ctmp->neighbor(k);
|
|
}
|
|
}
|
|
cnew = c->neighbor(c->index(vi));
|
|
cnew->set_neighbor(c->index(cprev),cnewprev);
|
|
cnewprev->set_neighbor(cprev->index(c),cnew);
|
|
break;
|
|
}
|
|
}
|
|
set_number_of_vertices(number_of_vertices() +1);
|
|
}// end insert_in_edge
|
|
|
|
void insert_in_facet(Vertex* v, Cell* c, int i)
|
|
{ // inserts v in the facet opposite to vertex i of cell c
|
|
|
|
CGAL_triangulation_precondition( (v != NULL) && (c != NULL));
|
|
CGAL_triangulation_precondition( dimension() >= 2 );
|
|
|
|
switch ( dimension() ) {
|
|
|
|
case 2:
|
|
{
|
|
CGAL_triangulation_precondition( i == 3 );
|
|
Cell* n = c->neighbor(2);
|
|
Cell* cnew = new Cell(*this,
|
|
c->vertex(0),c->vertex(1),v,NULL,
|
|
c, NULL,n,NULL);
|
|
n->set_neighbor(n->index(c),cnew);
|
|
c->set_neighbor(2,cnew);
|
|
c->vertex(0)->set_cell(cnew);
|
|
|
|
n = c->neighbor(1);
|
|
Cell* dnew = new Cell(*this,
|
|
c->vertex(0),v,c->vertex(2),NULL,
|
|
c,n,cnew,NULL);
|
|
n->set_neighbor(n->index(c),dnew);
|
|
c->set_neighbor(1,dnew);
|
|
cnew->set_neighbor(1,dnew);
|
|
|
|
c->set_vertex(0,v);
|
|
v->set_cell(c);
|
|
break;
|
|
}
|
|
case 3:
|
|
{
|
|
CGAL_triangulation_precondition( i == 0 || i == 1 || i == 2 || i == 3 );
|
|
// c will be modified to have v replacing vertex(i+3)
|
|
int i1,i2,i3;
|
|
|
|
if ( i&1 == 0 ) {
|
|
i1=(i+1)&3; i2=(i+2)&3; i3=6-i-i1-i2;
|
|
}
|
|
else {
|
|
i1=(i+1)&3; i2=(i+3)&3; i3=6-i-i1-i2;
|
|
}
|
|
// i,i1,i2,i3 is well oriented
|
|
// so v will "replace" the vertices in this order
|
|
// when creating the new cells one after another from c
|
|
|
|
Vertex* vi=c->vertex(i);
|
|
Vertex* v1=c->vertex(i1);
|
|
Vertex* v2=c->vertex(i2);
|
|
Vertex* v3=c->vertex(i3);
|
|
|
|
// new cell with v in place of i1
|
|
Cell* nc = c->neighbor(i1);
|
|
Cell* cnew1 = new Cell(*this,
|
|
vi,v,v2,v3,
|
|
NULL,nc,NULL,c);
|
|
nc->set_neighbor(nc->index(c),cnew1);
|
|
c->set_neighbor(i1,cnew1);
|
|
|
|
v3->set_cell(cnew1);
|
|
|
|
// new cell with v in place of i2
|
|
nc = c->neighbor(i2);
|
|
Cell* cnew2 = new Cell(*this,
|
|
vi,v1,v,v3,
|
|
NULL,cnew1,nc,c);
|
|
nc->set_neighbor(nc->index(c),cnew2);
|
|
c->set_neighbor(i2,cnew2);
|
|
cnew1->set_neighbor(2,cnew2); // links to previous cell
|
|
|
|
// v replaces i3 in c
|
|
c->set_vertex(i3,v);
|
|
|
|
// other side of facet containing v
|
|
Cell* d = c->neighbor(i);
|
|
int j = d->index(c);
|
|
int j1=d->index(v1);// triangulation supposed to be valid
|
|
int j2=d->index(v2);
|
|
int j3=6-j-j1-j2;
|
|
// then the orientation of j,j1,j2,j3 depends on the parity
|
|
// of i-j
|
|
|
|
// if ( (j-i)%2 == 0 ) { IDIOT !!!
|
|
// new cell with v in place of j1
|
|
Cell* nd = d->neighbor(j1);
|
|
Cell* dnew1 = new Cell(*this,
|
|
d->vertex(j),v,v3,v2,
|
|
cnew1,nd,d,NULL);
|
|
nd->set_neighbor(nd->index(d),dnew1);
|
|
d->set_neighbor(j1,dnew1);
|
|
cnew1->set_neighbor(0,dnew1);
|
|
|
|
// new cell with v in place of j2
|
|
nd = d->neighbor(j2);
|
|
Cell* dnew2 = new Cell(*this,
|
|
d->vertex(j),v1,v3,v,
|
|
cnew2,dnew1,d,nd);
|
|
nd->set_neighbor(nd->index(d),dnew2);
|
|
d->set_neighbor(j2,dnew2);
|
|
cnew2->set_neighbor(0,dnew2);
|
|
dnew1->set_neighbor(3,dnew2);
|
|
// }
|
|
// else { IDIOT !!!
|
|
// // new cell with v in place of j1
|
|
// Cell* nd = d->neighbor(j1);
|
|
// Cell* dnew1 = new Cell(*this,
|
|
// d->vertex(j),v,v2,v3,
|
|
// cnew1,nd,NULL,d);
|
|
// nd->set_neighbor(nd->index(d),dnew1);
|
|
// d->set_neighbor(j1,dnew1);
|
|
// cnew1->set_neighbor(0,dnew1);
|
|
|
|
// // new cell with v in place of j2
|
|
// nd = d->neighbor(j2);
|
|
// Cell* dnew2 = new Cell(*this,
|
|
// d->vertex(j),v1,v,v3,
|
|
// cnew2,dnew1,d,nd);
|
|
// nd->set_neighbor(nd->index(d),dnew2);
|
|
// d->set_neighbor(j2,dnew2);
|
|
// cnew2->set_neighbor(0,dnew2);
|
|
// dnew1->set_neighbor(2,dnew2);
|
|
// }
|
|
|
|
// v replaces i3 in d
|
|
d->set_vertex(j3,v);
|
|
v->set_cell(d);
|
|
|
|
break;
|
|
}
|
|
}
|
|
set_number_of_vertices(number_of_vertices() +1);
|
|
}
|
|
// end insert_in_facet
|
|
|
|
void insert_in_cell(Vertex* v, Cell* c)
|
|
|
|
{ //insert in cell
|
|
CGAL_triangulation_precondition( (v != NULL) && (c != NULL));
|
|
// c->insert_in_cell(v);
|
|
|
|
Vertex* v0 = c->vertex(0);
|
|
Vertex* v1 = c->vertex(1);
|
|
Vertex* v2 = c->vertex(2);
|
|
Vertex* v3 = c->vertex(3);
|
|
|
|
Cell* n1 = c->neighbor(1);
|
|
Cell* n2 = c->neighbor(2);
|
|
Cell* n3 = c->neighbor(3);
|
|
|
|
// c will be modified to have v,v1,v2,v3 as vertices
|
|
Cell* c3 = new Cell(*this,v0,v1,v2,v,c,NULL,NULL,n3);
|
|
Cell* c2 = new Cell(*this,v0,v1,v,v3,c,NULL,n2,c3);
|
|
Cell* c1 = new Cell(*this,v0,v,v2,v3,c,n1,c2,c3);
|
|
|
|
c3->set_neighbor(1,c1);
|
|
c3->set_neighbor(2,c2);
|
|
c2->set_neighbor(1,c1);
|
|
|
|
n1->set_neighbor(n1->index(c),c1);
|
|
n2->set_neighbor(n2->index(c),c2);
|
|
n3->set_neighbor(n3->index(c),c3);
|
|
|
|
c->set_vertex(0,v);
|
|
c->set_neighbor(1,c1);
|
|
c->set_neighbor(2,c2);
|
|
c->set_neighbor(3,c3);
|
|
|
|
if( v0->cell() == c ) { v0->set_cell(c1); }
|
|
v->set_cell(c);
|
|
set_number_of_vertices(number_of_vertices() +1);
|
|
}
|
|
// end insert_in_cell
|
|
|
|
void star_region( set<void*, less<void*> > & region, Vertex* v,
|
|
Cell* c, int li )
|
|
// region is a set of connected cells
|
|
// c belongs to region and has facet i on the boundary of region
|
|
// replaces the cells in region
|
|
// by linking v to the boundary of region
|
|
{
|
|
CGAL_triangulation_precondition( dimension() >= 2 );
|
|
CGAL_triangulation_precondition( region.find( (void *) c )
|
|
!= region.end() );
|
|
// does not check whether region is connected
|
|
Cell* nouv = create_star( region, v, c, li );
|
|
v->set_cell( nouv );
|
|
// v->set_cell( create_star( region, v, c, li ) );
|
|
set<void*, less<void*> >::const_iterator it;
|
|
for( it = region.begin(); it != region.end(); ++it) {
|
|
delete( (Cell *) *it);
|
|
}
|
|
}
|
|
private:
|
|
Cell* create_star( set<void*, less<void*> > & region, Vertex* v,
|
|
Cell* c, int li )
|
|
// creates the cells needed by star_region
|
|
{
|
|
Cell* cnew;
|
|
if ( dimension() == 3 ) {
|
|
int i[3];
|
|
if ( (li%2) == 1 ) {
|
|
i[0] = (li+1)&3;
|
|
i[1] = (li+2)&3;
|
|
i[2] = (li+3)&3;
|
|
}
|
|
else {
|
|
i[0] = (li+2)&3;
|
|
i[1] = (li+1)&3;
|
|
i[2] = (li+3)&3;
|
|
}
|
|
cnew = new Cell( *this,
|
|
c->vertex(i[0]), c->vertex(i[1]), c->vertex(i[2]), v,
|
|
NULL, NULL, NULL, c->neighbor(li) );
|
|
c->neighbor(li)->set_neighbor( c->neighbor(li)->index(c), cnew);
|
|
|
|
// look for the other three neighbors of cnew
|
|
int j1, j2;
|
|
Cell* cur;
|
|
Cell* n;
|
|
for (int ii=0; ii<3; ii++) {
|
|
cnew->vertex(ii)->set_cell(cnew);
|
|
// indices of the vertices of cnew such that i[ii],j1,j2,li positive
|
|
j1 = nextposaroundij(i[ii],li);
|
|
j2 = 6-i[ii]-li-j1;
|
|
// turn around the oriented edge j1 j2
|
|
cur = c;
|
|
n = c->neighbor(i[ii]);
|
|
CGAL_triangulation_assertion( nextposaroundij(j1,j2)==i[ii] );//debug
|
|
while (true) {
|
|
j1 = n->index( cur->vertex(j1) );
|
|
j2 = n->index( cur->vertex(j2) );
|
|
if ( region.find( (void*) n ) == region.end() ) {
|
|
//not in conflict
|
|
break;
|
|
}
|
|
CGAL_triangulation_assertion( n != c );
|
|
cur = n;
|
|
n = n->neighbor( nextposaroundij(j1,j2) );
|
|
}
|
|
// now n is outside region, cur is inside
|
|
if ( n->neighbor( nextposaroundij(j2,j1) ) == cur ) {
|
|
// neighbor relation is reciprocical, ie
|
|
// the cell we are looking for is not yet created
|
|
cnew->set_neighbor(ii,create_star(region,v,cur,cur->index(n)));
|
|
continue;
|
|
}
|
|
// else the cell we are looking for was already created
|
|
cnew->set_neighbor(ii,n->neighbor( nextposaroundij(j2,j1) ));
|
|
}
|
|
return cnew;
|
|
} // endif dimension 3
|
|
|
|
// else dimension 2
|
|
// i1 i2 such that v,i1,i2 positive
|
|
int i1=ccw(li);
|
|
/* cnew = new Cell( *this, */
|
|
/* v, c->vertex(i1), c->vertex(i2), NULL, */
|
|
/* c->neighbor(li), NULL, NULL, NULL); */
|
|
/* c->vertex(i1)->set_cell(cnew); */
|
|
/* c->neighbor(li)->set_neighbor( c->neighbor(li)->index(c), cnew); */
|
|
// traversal of the boundary of region in ccw order to create all
|
|
// the new facets
|
|
Cell* bound = c;
|
|
Vertex* v1 = c->vertex(i1);
|
|
int ind = c->neighbor(li)->index(c); // to be able to find the
|
|
// first cell that will be created
|
|
Cell* cur;
|
|
Cell* pnew = NULL;
|
|
do {
|
|
cur = bound;
|
|
// turn around v2 until we reach the boundary of region
|
|
while ( region.find( (void*) cur->neighbor(cw(i1)) ) !=
|
|
region.end() ) {
|
|
// neighbor in conflict
|
|
cur = cur->neighbor(cw(i1));
|
|
i1 = cur->index( v1 );
|
|
}
|
|
// here cur has an edge on the boundary of region
|
|
cnew = new Cell( *this,
|
|
v, v1, cur->vertex( ccw(i1) ), NULL,
|
|
cur->neighbor(cw(i1)), NULL, pnew, NULL);
|
|
cur->neighbor(cw(i1))->set_neighbor
|
|
( cur->neighbor(cw(i1))->index(cur), cnew );
|
|
// pnew is null at the first iteration
|
|
v1->set_cell(cnew);
|
|
//pnew->set_neighbor( cw(pnew->index(v1)), cnew );
|
|
if (pnew) { pnew->set_neighbor( 1, cnew );}
|
|
|
|
bound = cur;
|
|
i1 = ccw(i1);
|
|
v1 = bound->vertex(i1);
|
|
pnew = cnew;
|
|
//} while ( ( bound != c ) || ( li != cw(i1) ) );
|
|
} while ( v1 != c->vertex(ccw(li)) );
|
|
// missing neighbors between the first and the last created cells
|
|
cur = c->neighbor(li)->neighbor(ind); // first created cell
|
|
cnew->set_neighbor( 1, cur );
|
|
cur->set_neighbor( 2, cnew );
|
|
return cnew;
|
|
}
|
|
public:
|
|
|
|
// ITERATOR METHODS
|
|
|
|
Cell_iterator cells_begin() const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
Tds* ncthis = (Tds *)this;
|
|
return Cell_iterator(ncthis);
|
|
}
|
|
|
|
Cell_iterator cells_end() const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
Tds* ncthis = (Tds *)this;
|
|
return Cell_iterator(ncthis, 1);
|
|
}
|
|
|
|
Facet_iterator facets_begin() const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() >=2 );
|
|
Tds* ncthis = (Tds*)this;
|
|
return Facet_iterator(ncthis);
|
|
}
|
|
|
|
Facet_iterator facets_end() const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() >=2 );
|
|
Tds* ncthis = (Tds*)this;
|
|
return Facet_iterator(ncthis,1);
|
|
}
|
|
|
|
Edge_iterator edges_begin() const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() >=1 );
|
|
Tds* ncthis = (Tds*)this;
|
|
return Edge_iterator(ncthis);
|
|
}
|
|
|
|
Edge_iterator edges_end() const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() >=1 );
|
|
Tds* ncthis = (Tds*)this;
|
|
return Edge_iterator(ncthis,1);
|
|
}
|
|
|
|
Vertex_iterator vertices_begin() const
|
|
{
|
|
CGAL_triangulation_precondition( number_of_vertices() > 0 );
|
|
Tds* ncthis = (Tds*)this;
|
|
return Vertex_iterator(ncthis);
|
|
}
|
|
|
|
Vertex_iterator vertices_end() const
|
|
{
|
|
CGAL_triangulation_precondition( number_of_vertices() > 0 );
|
|
Tds* ncthis = (Tds*)this;
|
|
return Vertex_iterator(ncthis,1);
|
|
}
|
|
|
|
// CIRCULATOR METHODS
|
|
|
|
Cell_circulator incident_cells(Edge e) const
|
|
{
|
|
CGAL_triangulation_precondition( dimension() == 3 );
|
|
Tds* ncthis = (Tds *)this;
|
|
return Cell_circulator(ncthis,e);
|
|
}
|
|
|
|
// CHECKING
|
|
bool is_valid(bool verbose = false, int level = 0) const
|
|
{ // is_valid()
|
|
switch ( dimension() ) {
|
|
case 3:
|
|
{
|
|
int vertex_count;
|
|
if ( ! count_vertices(vertex_count,verbose,level) ) {return false;}
|
|
if ( number_of_vertices() != vertex_count ) {
|
|
if (verbose) { cerr << "false number of vertices" << endl; }
|
|
CGAL_triangulation_assertion(false); return false;
|
|
}
|
|
|
|
int edge_count;
|
|
if ( ! count_edges(edge_count,verbose,level) ) {return false;}
|
|
int facet_count;
|
|
if ( ! count_facets(facet_count,verbose,level) ) {return false;}
|
|
int cell_count;
|
|
if ( ! count_cells(cell_count,verbose,level) ) {return false;}
|
|
|
|
// Euler relation
|
|
if ( cell_count - facet_count + edge_count - vertex_count != 0 ) {
|
|
if (verbose) { cerr << "Euler relation unsatisfied"<< endl; }
|
|
CGAL_triangulation_assertion(false); return false;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
int vertex_count;
|
|
if ( ! count_vertices(vertex_count,verbose,level) ) {return false;}
|
|
if ( number_of_vertices() != vertex_count ) {
|
|
if (verbose) { cerr << "false number of vertices" << endl; }
|
|
CGAL_triangulation_assertion(false); return false;
|
|
}
|
|
|
|
int edge_count;
|
|
if ( ! count_edges(edge_count,verbose,level) ) {return false;}
|
|
// Euler for edges
|
|
if ( edge_count != 3 * vertex_count - 6 ) {
|
|
if (verbose) { cerr << "Euler relation unsatisfied - edges/vertices" << endl;}
|
|
CGAL_triangulation_assertion(false); return false;
|
|
}
|
|
|
|
int facet_count;
|
|
if ( ! count_facets(facet_count,verbose,level) ) {return false;}
|
|
// Euler for facets
|
|
if ( facet_count != 2 * vertex_count - 4 ) {
|
|
if (verbose) { cerr << "Euler relation unsatisfied - facets/vertices" << endl;}
|
|
CGAL_triangulation_assertion(false); return false;
|
|
}
|
|
break;
|
|
}
|
|
case 1:
|
|
{
|
|
int vertex_count;
|
|
if ( ! count_vertices(vertex_count,verbose,level) ) {return false;}
|
|
if ( number_of_vertices() != vertex_count ) {
|
|
if (verbose) { cerr << "false number of vertices" << endl; }
|
|
CGAL_triangulation_assertion(false); return false;
|
|
}
|
|
int edge_count;
|
|
if ( ! count_edges(edge_count,verbose,level) ) {return false;}
|
|
// Euler for edges
|
|
if ( edge_count != vertex_count ) {
|
|
if (verbose) { cerr << "false number of edges" << endl; }
|
|
CGAL_triangulation_assertion(false); return false;
|
|
}
|
|
break;
|
|
}
|
|
case 0:
|
|
{
|
|
if ( number_of_vertices() < 2 ) {
|
|
if (verbose) { cerr << "less than 2 vertices but dimension 0" << endl; }
|
|
CGAL_triangulation_assertion(false); return false;
|
|
}
|
|
// no break; continue
|
|
}
|
|
case -1:
|
|
{
|
|
if ( number_of_vertices() < 1 ) {
|
|
if (verbose)
|
|
cerr << "no vertex but dimension -1" << endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
// vertex count
|
|
int vertex_count;
|
|
if ( ! count_vertices(vertex_count,verbose,level) )
|
|
return false;
|
|
if ( number_of_vertices() != vertex_count ) {
|
|
if (verbose)
|
|
cerr << "false number of vertices" << endl;
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
}
|
|
} // end switch
|
|
if (verbose) { cerr << "valid data structure" << endl; }
|
|
return true;
|
|
} // end is_valid
|
|
|
|
//Helping functions
|
|
|
|
void init(Vertex* v)
|
|
{
|
|
}
|
|
|
|
void copy_tds(const Tds & tds)
|
|
{
|
|
map< void*, void*, less<void*> > V;
|
|
map< void*, void*, less<void*> > F;
|
|
Vertex* v;
|
|
Cell* f;
|
|
|
|
clear();
|
|
|
|
int n = tds.number_of_vertices();
|
|
set_number_of_vertices(n);
|
|
set_dimension(tds.dimension());
|
|
|
|
if(n == 0){ return ; }
|
|
|
|
{ // create the vertices
|
|
|
|
Vertex_iterator it=tds.vertices_begin();
|
|
while (it != tds.vertices_end()) {
|
|
V[&(*it)] = new Vertex( it->point() );
|
|
++it;
|
|
}
|
|
}
|
|
|
|
{ // create the cells
|
|
Cell* it = tds._list_of_cells._next_cell;
|
|
while ( it != tds.past_end_cell() ){
|
|
F[&(*it)]= new Cell( *this,
|
|
(Vertex*) V[it->vertex(0)],
|
|
(Vertex*) V[it->vertex(1)],
|
|
(Vertex*) V[it->vertex(2)],
|
|
(Vertex*) V[it->vertex(3)]);
|
|
it = it->_next_cell;
|
|
}
|
|
}
|
|
|
|
// only works in dimension 3
|
|
// { // create the cells
|
|
// Cell_iterator it = tds.cells_begin();
|
|
// while(it != tds.cells_end()){
|
|
// F[&(*it)]= new Cell( *this,
|
|
// (Vertex*) V[it->vertex(0)],
|
|
// (Vertex*) V[it->vertex(1)],
|
|
// (Vertex*) V[it->vertex(2)],
|
|
// (Vertex*) V[it->vertex(3)]);
|
|
// ++(it);
|
|
// }
|
|
// }
|
|
|
|
{ // link the vertices to a cell
|
|
Vertex_iterator it = tds.vertices_begin();
|
|
while(it != tds.vertices_end()) {
|
|
v = (Vertex*) V[&(*it)];
|
|
v->set_cell( (Cell*) F[it->cell()] );
|
|
++it;
|
|
}
|
|
}
|
|
|
|
{ // hook neighbor pointers of the cells
|
|
Cell* it = tds._list_of_cells._next_cell;
|
|
while ( it != tds.past_end_cell() ){
|
|
for(int j = 0; j < 4; j++){
|
|
f = ((Cell*) F[&(*it)]);
|
|
f->set_neighbor(j, (Cell*) F[it->neighbor(j)] );
|
|
}
|
|
it = it->_next_cell;
|
|
}
|
|
}
|
|
|
|
// only works in dimension 3
|
|
// { // hook neighbor pointers of the cells
|
|
// Cell_iterator it = tds.cells_begin();
|
|
// while(it != tds.cells_end()){
|
|
// for(int j = 0; j < 3; j++){
|
|
// f = ((Cell*) F[&(*it)]);
|
|
// f->set_neighbor(j, (Cell*) F[it->neighbor(j)] );
|
|
// }
|
|
// ++it;
|
|
// }
|
|
// }
|
|
|
|
CGAL_triangulation_postcondition( is_valid() );
|
|
}
|
|
|
|
|
|
void swap(Tds &tds)
|
|
{
|
|
int dim = dimension();
|
|
int nb = number_of_vertices();
|
|
Cell *l = list_of_cells().next_cell;
|
|
|
|
set_dimension(tds.dimension());
|
|
set_number_of_vertices(tds.number_of_vertices());
|
|
_list_of_cells.next_cell = tds.list_of_cells().next_cell;
|
|
|
|
tds._dimension = dim;
|
|
tds._number_of_vertices = nb;
|
|
tds._list_of_cells.next_cell = l;
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
|
|
if(number_of_vertices() == 0) {
|
|
// the list of cells must be cleared even in this case
|
|
Cell* it=_list_of_cells._next_cell;
|
|
while ( it != past_end_cell() ) {
|
|
delete it;
|
|
// uses the destructor of ds_cell, which
|
|
// removes the cell from the list of cells
|
|
it=_list_of_cells._next_cell;
|
|
};
|
|
// then _list_of_cells points on itself, nothing more to do
|
|
set_dimension(-2);
|
|
return;
|
|
}
|
|
|
|
list<Vertex *> Vertices;
|
|
{// creation of a list of all vertices
|
|
Vertex_iterator it = vertices_begin(), done = vertices_end();
|
|
do{
|
|
Vertices.push_back(&(*it));
|
|
} while(++it!=done);
|
|
}
|
|
|
|
{// deletion of the cells
|
|
// does not use the cell iterator to work in any dimension
|
|
Cell* it=_list_of_cells._next_cell;
|
|
while ( it != past_end_cell() ) {
|
|
delete it;
|
|
// uses the destructor of ds_cell, which
|
|
// removes the cell from the list of cells
|
|
it=_list_of_cells._next_cell;
|
|
};
|
|
// then _list_of_cells points on itself, nothing more to do
|
|
}
|
|
|
|
|
|
|
|
{// deletion of the vertices
|
|
list<Vertex*>::iterator
|
|
it=Vertices.begin(),done=Vertices.end();
|
|
do{
|
|
delete *it;
|
|
} while (++it!=done);
|
|
}
|
|
|
|
set_number_of_vertices(0);
|
|
set_dimension(-2);
|
|
}
|
|
|
|
|
|
private:
|
|
// in dimension i, number of vertices >= i+2
|
|
// ( the boundary of a simplex in dimension i+1 has i+2 vertices )
|
|
int _dimension; //
|
|
int _number_of_vertices;
|
|
|
|
// we maintain the list of cells to be able to traverse the triangulation
|
|
// it starts with a "foo" element that will never be removed.
|
|
// the list is circular, the foo element being used to recognize the end
|
|
// of the list
|
|
Cell _list_of_cells;
|
|
|
|
// ACCESS FUNCTIONS
|
|
|
|
inline
|
|
Cell & list_of_cells()
|
|
{return _list_of_cells;}
|
|
|
|
inline
|
|
Cell* past_end_cell() const
|
|
{
|
|
Tds* ncthis = (Tds *)this;
|
|
return &( ncthis->_list_of_cells );
|
|
}
|
|
|
|
// used by is-valid
|
|
bool count_vertices(int & i, bool verbose = false, int level = 0) const
|
|
// counts AND checks the validity
|
|
{
|
|
i = 0;
|
|
Vertex_iterator it = vertices_begin();
|
|
|
|
while(it != vertices_end()) {
|
|
if ( ! it->is_valid(verbose,level) ) {
|
|
if (verbose) { cerr << "invalid vertex" << endl; }
|
|
CGAL_triangulation_assertion(false); return false;
|
|
}
|
|
++i;
|
|
++it;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool count_facets(int & i, bool verbose = false, int level = 0) const
|
|
// counts but does not check
|
|
{
|
|
i = 0;
|
|
Facet_iterator it = facets_begin();
|
|
|
|
while(it != facets_end()) {
|
|
if ( ! (*it).first->is_valid(dimension(),verbose, level) ) {
|
|
if (verbose) { cerr << "invalid facet" << endl;}
|
|
CGAL_triangulation_assertion(false); return false;
|
|
}
|
|
++i;
|
|
++it;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool count_edges(int & i, bool verbose = false, int level = 0) const
|
|
// counts but does not check
|
|
{
|
|
i = 0;
|
|
Edge_iterator it = edges_begin();
|
|
|
|
while(it != edges_end()) {
|
|
if ( ! (*it).first->is_valid(dimension(),verbose, level) ) {
|
|
if (verbose) { cerr << "invalid edge" << endl;}
|
|
CGAL_triangulation_assertion(false); return false;
|
|
}
|
|
++i;
|
|
++it;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool count_cells(int & i, bool verbose = false, int level = 0) const
|
|
// counts AND checks the validity
|
|
{
|
|
i = 0;
|
|
Cell_iterator it = cells_begin();
|
|
|
|
while(it != cells_end()) {
|
|
if ( ! it->is_valid(dimension(),verbose, level) ) {
|
|
if (verbose) { cerr << "invalid cell" << endl;}
|
|
CGAL_triangulation_assertion(false); return false;
|
|
}
|
|
++i;
|
|
++it;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
};
|
|
|
|
template < class Vb, class Cb>
|
|
istream& operator>>
|
|
(istream& is, CGAL_Triangulation_data_structure_3<Vb,Cb>& tds)
|
|
{
|
|
|
|
return is;
|
|
}
|
|
|
|
|
|
template < class Vb, class Cb>
|
|
ostream& operator<<
|
|
(ostream& os, const CGAL_Triangulation_data_structure_3<Vb,Cb> &tds)
|
|
{
|
|
|
|
return os;
|
|
}
|
|
|
|
|
|
#endif CGAL_TRIANGULATION_DATA_STRUCTURE_3_H
|