cgal/Mesh_3/include/CGAL/Mesh_3/Mesh_sizing_field.h

327 lines
8.4 KiB
C++

// Copyright (c) 2009 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Stephane Tayeb
//
//******************************************************************************
// File Description : Defines a sizing field stored into an external
// mesh triangulation
//******************************************************************************
#ifndef CGAL_MESH_3_MESH_SIZING_FIELD_H
#define CGAL_MESH_3_MESH_SIZING_FIELD_H
#ifdef CGAL_LINKED_WITH_TBB
# include <tbb/enumerable_thread_specific.h>
#endif
namespace CGAL {
namespace Mesh_3
{
/**
* @class Mesh_sizing_field_base
*/
// Sequential
template <typename Cell_handle, typename Concurrency_tag>
class Mesh_sizing_field_base
{
protected:
Cell_handle get_last_cell() const
{
return last_cell_;
}
void set_last_cell(Cell_handle c) const
{
last_cell_ = c;
}
/// A cell that is used to accelerate location queries
mutable Cell_handle last_cell_;
};
#ifdef CGAL_LINKED_WITH_TBB
/**
* @class Mesh_sizing_field_base specialization
*/
// Parallel
template <typename Cell_handle>
class Mesh_sizing_field_base<Cell_handle, Parallel_tag>
{
protected:
Cell_handle get_last_cell() const
{
return last_cell_.local();
}
void set_last_cell(Cell_handle c) const
{
last_cell_.local() = c;
}
/// A cell that is used to accelerate location queries
mutable tbb::enumerable_thread_specific<Cell_handle> last_cell_;
};
#endif // CGAL_LINKED_WITH_TBB
/**
* @class Mesh_sizing_field
*/
template <typename Tr, bool Need_vertex_update = true>
class Mesh_sizing_field
: public Mesh_sizing_field_base<typename Tr::Cell_handle,
typename Tr::Concurrency_tag>
{
// Types
typedef typename Tr::Geom_traits Gt;
typedef typename Tr::Point Point_3;
typedef typename Gt::FT FT;
typedef typename Tr::Vertex_handle Vertex_handle;
typedef typename Tr::Cell_handle Cell_handle;
public:
// update vertices of mesh triangulation ?
static const bool is_vertex_update_needed = Need_vertex_update;
public:
/**
* Constructor
*/
Mesh_sizing_field(Tr& tr);
/**
* Fill sizing field, using size associated to point in \c value_map
*/
void fill(const std::map<Point_3, FT>& value_map);
/**
* Returns size at point \c p.
*/
FT operator()(const Point_3& p) const
{ return this->operator()(p, this->get_last_cell()); }
/**
* Returns size at point \c p, using \c v to accelerate \c p location
* in triangulation
*/
FT operator()(const Point_3& p, const Vertex_handle& v) const
{ return this->operator()(p,v->cell()); }
/**
* Returns size at point \c p.
*/
FT operator()(const Point_3& p, const Cell_handle& c) const;
/**
* Returns size at point \c p. Assumes that p is the centroid of c.
*/
FT operator()(const Point_3& p, const std::pair<Cell_handle,bool>& c) const;
private:
/**
* Returns size at point \c p, by interpolation into tetrahedron.
*/
FT interpolate_on_cell_vertices(const Point_3& p,
const Cell_handle& cell) const;
/**
* Returns size at point \c p, by interpolation into facet (\c cell is assumed
* to be an infinite cell).
*/
FT interpolate_on_facet_vertices(const Point_3& p,
const Cell_handle& cell) const;
private:
/// The triangulation
Tr& tr_;
};
template <typename Tr, bool B>
Mesh_sizing_field<Tr,B>::
Mesh_sizing_field(Tr& tr)
: tr_(tr)
{
}
template <typename Tr, bool B>
void
Mesh_sizing_field<Tr,B>::
fill(const std::map<Point_3, FT>& value_map)
{
typedef typename Tr::Finite_vertices_iterator Fvi;
for ( Fvi vit = tr_.finite_vertices_begin() ;
vit != tr_.finite_vertices_end() ;
++ vit )
{
typename std::map<Point_3, FT>::const_iterator find_result =
value_map.find(vit->point());
if ( find_result != value_map.end() )
{
vit->set_meshing_info(find_result->second);
}
else
{
CGAL_assertion(false);
vit->set_meshing_info(FT(0));
}
}
}
template <typename Tr, bool B>
typename Mesh_sizing_field<Tr,B>::FT
Mesh_sizing_field<Tr,B>::
operator()(const Point_3& p, const Cell_handle& c) const
{
#ifdef CGAL_MESH_3_SIZING_FIELD_INEXACT_LOCATE
Cell_handle cell = tr_.inexact_locate(p,c);
const Point_3& p0 = cell->vertex(0)->point();
const Point_3& p1 = cell->vertex(1)->point();
const Point_3& p2 = cell->vertex(2)->point();
const Point_3& p3 = cell->vertex(3)->point();
if(tr_.inexact_orientation(p0, p1, p2, p3) == NEGATIVE ||
tr_.inexact_orientation(p0, p1, p2, p3) == NEGATIVE ||
tr_.inexact_orientation(p0, p1, p2, p3) == NEGATIVE ||
tr_.inexact_orientation(p0, p1, p2, p3) == NEGATIVE)
{
cell = tr_.locate(p, cell);
}
#else
const Cell_handle cell = tr_.locate(p,c);
#endif
set_last_cell(cell);
if ( !tr_.is_infinite(cell) )
return interpolate_on_cell_vertices(p,cell);
else
return interpolate_on_facet_vertices(p,cell);
}
template <typename Tr, bool B>
typename Mesh_sizing_field<Tr,B>::FT
Mesh_sizing_field<Tr,B>::
operator()(const Point_3&, const std::pair<Cell_handle,bool>& c) const
{
// Assumes that p is the centroid of c
const Cell_handle& cell = c.first;
// Interpolate value using tet vertices values
const FT& va = cell->vertex(0)->meshing_info();
const FT& vb = cell->vertex(1)->meshing_info();
const FT& vc = cell->vertex(2)->meshing_info();
const FT& vd = cell->vertex(3)->meshing_info();
return ( (va+vb+vc+vd)/4 );
}
template <typename Tr, bool B>
typename Mesh_sizing_field<Tr,B>::FT
Mesh_sizing_field<Tr,B>::
interpolate_on_cell_vertices(const Point_3& p, const Cell_handle& cell) const
{
typename Gt::Compute_volume_3 volume =
Gt().compute_volume_3_object();
// Interpolate value using tet vertices values
const FT& va = cell->vertex(0)->meshing_info();
const FT& vb = cell->vertex(1)->meshing_info();
const FT& vc = cell->vertex(2)->meshing_info();
const FT& vd = cell->vertex(3)->meshing_info();
const Point_3& a = cell->vertex(0)->point();
const Point_3& b = cell->vertex(1)->point();
const Point_3& c = cell->vertex(2)->point();
const Point_3& d = cell->vertex(3)->point();
const FT abcp = CGAL::abs(volume(a,b,c,p));
const FT abdp = CGAL::abs(volume(a,d,b,p));
const FT acdp = CGAL::abs(volume(a,c,d,p));
const FT bcdp = CGAL::abs(volume(b,d,c,p));
// If volume is 0, then compute the average value
if ( is_zero(abcp+abdp+acdp+bcdp) )
return (va+vb+vc+vd)/4.;
return ( (abcp*vd + abdp*vc + acdp*vb + bcdp*va) / (abcp+abdp+acdp+bcdp) );
}
template <typename Tr, bool B>
typename Mesh_sizing_field<Tr,B>::FT
Mesh_sizing_field<Tr,B>::
interpolate_on_facet_vertices(const Point_3& p, const Cell_handle& cell) const
{
typename Gt::Compute_area_3 area =
Gt().compute_area_3_object();
// Find infinite vertex and put it in k0
int k0 = 0;
int k1 = 1;
int k2 = 2;
int k3 = 3;
if ( tr_.is_infinite(cell->vertex(1)) )
std::swap(k0,k1);
if ( tr_.is_infinite(cell->vertex(2)) )
std::swap(k0,k2);
if ( tr_.is_infinite(cell->vertex(3)) )
std::swap(k0,k3);
// Interpolate value using tet vertices values
const FT& va = cell->vertex(k1)->meshing_info();
const FT& vb = cell->vertex(k2)->meshing_info();
const FT& vc = cell->vertex(k3)->meshing_info();
const Point_3& a = cell->vertex(k1)->point();
const Point_3& b = cell->vertex(k2)->point();
const Point_3& c = cell->vertex(k3)->point();
const FT abp = area(a,b,p);
const FT acp = area(a,c,p);
const FT bcp = area(b,c,p);
CGAL_assertion(abp >= 0);
CGAL_assertion(acp >= 0);
CGAL_assertion(bcp >= 0);
// If area is 0, then compute the average value
if ( is_zero(abp+acp+bcp) )
return (va+vb+vc)/3.;
return ( (abp*vc + acp*vb + bcp*va ) / (abp+acp+bcp) );
}
} // end namespace Mesh_3
} //namespace CGAL
#endif // CGAL_MESH_3_MESH_SIZING_FIELD_H