mirror of https://github.com/CGAL/cgal
807 lines
22 KiB
C++
807 lines
22 KiB
C++
/******************************************************************
|
|
* Core Library Version 1.6, June 2003
|
|
* Copyright (c) 1995-2002 Exact Computation Project
|
|
*
|
|
* File: ExprRep.h
|
|
*
|
|
* Written by
|
|
* Koji Ouchi <ouchi@simulation.nyu.edu>
|
|
* Chee Yap <yap@cs.nyu.edu>
|
|
* Igor Pechtchanski <pechtcha@cs.nyu.edu>
|
|
* Vijay Karamcheti <vijayk@cs.nyu.edu>
|
|
* Chen Li <chenli@cs.nyu.edu>
|
|
* Zilin Du <zilin@cs.nyu.edu>
|
|
* Sylvain Pion <pion@cs.nyu.edu>
|
|
* Vikram Sharma<sharma@cs.nyu.edu>
|
|
* WWW URL: http://cs.nyu.edu/exact/
|
|
* Email: exact@cs.nyu.edu
|
|
*
|
|
* $Id$
|
|
*****************************************************************/
|
|
|
|
#ifndef CORE_EXPRREP_H
|
|
#define CORE_EXPRREP_H
|
|
|
|
#include <CORE/CoreImpl.h>
|
|
#include <CORE/CoreAux.h>
|
|
#include <CORE/Real.h>
|
|
#include <CORE/Filter.h>
|
|
#include <CORE/MemoryPool.h>
|
|
#include <CORE/poly/Sturm.h>
|
|
|
|
CORE_BEGIN_NAMESPACE
|
|
|
|
#ifdef DEBUG_BOUND
|
|
// These counters are incremented each time each bound is recognized as equal
|
|
// to the best one in computeBound().
|
|
extern unsigned int BFMSS_counter;
|
|
extern unsigned int Measure_counter;
|
|
// extern unsigned int Cauchy_counter;
|
|
extern unsigned int LiYap_counter;
|
|
// These counters are incremented each time each bound is recognized as equal
|
|
// to the best one in computeBound(), and it's strictly the best.
|
|
extern unsigned int BFMSS_only_counter;
|
|
extern unsigned int Measure_only_counter;
|
|
// extern unsigned int Cauchy_only_counter;
|
|
extern unsigned int LiYap_only_counter;
|
|
// This counter is incremented each time the precision needed matches the
|
|
// root bound.
|
|
extern unsigned int rootBoundHitCounter;
|
|
#endif
|
|
|
|
/// \struct NodeInfo
|
|
/// \brief store information of a node
|
|
struct NodeInfo {
|
|
Real appValue; ///< current approximate value
|
|
bool appComputed; ///< true if the approx value been computed
|
|
bool flagsComputed; ///< true if rootBound parameters have been computed
|
|
extLong knownPrecision; ///< Precision achieved by current approx value
|
|
|
|
#ifdef DEBUG
|
|
extLong relPrecision;
|
|
extLong absPrecision;
|
|
unsigned long numNodes;
|
|
#endif
|
|
|
|
/// d_e bounds the degree of the minimal polynomial of a DAG expression
|
|
/** Basically, d_e is equal to 2^k where k is the number of square-root nodes
|
|
* in the DAG. If there are other kinds of non-linear nodes, this is
|
|
* generalized accordingly. */
|
|
extLong d_e;
|
|
|
|
bool visited; ///< flag in counting # of sqrts
|
|
int sign; ///< sign of the value being represented.
|
|
|
|
extLong uMSB; ///< upper bound of the position of Most Significant Bit
|
|
extLong lMSB; ///< lower bound of the position of Most Significant Bit
|
|
|
|
// For the degree-length method mentioned in Chee's book.
|
|
/* the degree of defining polynomial P(X) obtained from Resultant calculus
|
|
* (deprecated now) */
|
|
// extLong degree;
|
|
|
|
// extLong length; ///< length is really lg(|| P(X) ||)
|
|
extLong measure; ///< measure is really lg(Measure)
|
|
|
|
// For our new bound.
|
|
/// 2^{high(E)} is an UPPER bound for the moduli of ALL conjugates of E.
|
|
/** In our papers, high is equal to log_2(\overline{\mu(E)}). */
|
|
extLong high;
|
|
/// 2^{-low(E)} is an LOWER bound for the moduli of ALL NON_ZERO conjugate of E.
|
|
/** BE CAREFUL! NOTE THAT UNLIKE "high", the sign of low is negated here!
|
|
In our papers, low is equal to -log_2(\underline{\nu(E)}) */
|
|
extLong low;
|
|
|
|
/// \brief upper bound of the leading coefficient of minimal defining
|
|
/// polynomial of $E$.
|
|
extLong lc;
|
|
/// \brief upper bound of the last non-zero coefficient of minimal defining
|
|
/// polynomial of $E$.
|
|
extLong tc;
|
|
|
|
// For the 2-ary BFMSS bound.
|
|
extLong v2p, v2m;
|
|
// For the 5-ary BFMSS bound.
|
|
extLong v5p, v5m;
|
|
/// 2^u25 is an upper bound for the moduli of all the conjugates of U(E)
|
|
/** where E = 2^v2*5^v5*U(E)/L(E), U(E) and L(E) are division-free. */
|
|
extLong u25;
|
|
/// 2^l25 is an upper bound for the moduli of all the conjugates of L(E)
|
|
/** where E = 2^v2*5^v5*U(E)/L(E), U(E) and L(E) are division-free. */
|
|
extLong l25;
|
|
|
|
int ratFlag; ///< rational flag
|
|
BigRat* ratValue; ///< rational value
|
|
|
|
/// default constructor
|
|
NodeInfo();
|
|
};
|
|
|
|
// forward reference
|
|
// class Expr;
|
|
|
|
/// \class ExprRep
|
|
/// \brief The sharable, internal representation of expressions
|
|
class ExprRep {
|
|
public:
|
|
/// \name Constructor and Destructor
|
|
//@{
|
|
/// default constructor
|
|
ExprRep();
|
|
/// virtual destructor for this base class
|
|
virtual ~ExprRep() {
|
|
if (nodeInfo != NULL) // This check is only for optimization.
|
|
delete nodeInfo;
|
|
}
|
|
//@}
|
|
|
|
/// \name Reference Counting
|
|
//@{
|
|
/// increase reference counter
|
|
void incRefCount() { ++refCount; }
|
|
/// decrease reference counter
|
|
void decRefCount() { if ((--refCount) == 0) delete this; }
|
|
/// check whether reference counter == 1
|
|
int isUnique() const { return refCount == 1; }
|
|
//@}
|
|
|
|
/// \name Helper Functions
|
|
//@{
|
|
/// Get the approximate value
|
|
const Real & getAppValue(const extLong& relPrec = defRelPrec,
|
|
const extLong& absPrec = defAbsPrec);
|
|
/// Get the sign.
|
|
int getSign();
|
|
int getExactSign();
|
|
|
|
const Real& appValue() const { return nodeInfo->appValue; }
|
|
Real& appValue() { return nodeInfo->appValue; }
|
|
|
|
const bool& appComputed() const { return nodeInfo->appComputed; }
|
|
bool& appComputed() { return nodeInfo->appComputed; }
|
|
|
|
const bool& flagsComputed() const { return nodeInfo->flagsComputed; }
|
|
bool& flagsComputed() { return nodeInfo->flagsComputed; }
|
|
|
|
const extLong& knownPrecision() const { return nodeInfo->knownPrecision; }
|
|
extLong& knownPrecision() { return nodeInfo->knownPrecision; }
|
|
|
|
#ifdef DEBUG
|
|
const extLong& relPrecision() const { return nodeInfo->relPrecision; }
|
|
extLong& relPrecision() { return nodeInfo->relPrecision; }
|
|
|
|
const extLong& absPrecision() const { return nodeInfo->absPrecision; }
|
|
extLong& absPrecision() { return nodeInfo->absPrecision; }
|
|
|
|
const unsigned long& numNodes() const { return nodeInfo->numNodes; }
|
|
unsigned long& numNodes() { return nodeInfo->numNodes; }
|
|
#endif
|
|
|
|
const extLong& d_e() const { return nodeInfo->d_e; }
|
|
extLong& d_e() { return nodeInfo->d_e; }
|
|
|
|
const bool& visited() const { return nodeInfo->visited; }
|
|
bool& visited() { return nodeInfo->visited; }
|
|
|
|
const int& sign() const { return nodeInfo->sign; }
|
|
int& sign() { return nodeInfo->sign; }
|
|
|
|
const extLong& uMSB() const { return nodeInfo->uMSB; }
|
|
extLong& uMSB() { return nodeInfo->uMSB; }
|
|
|
|
const extLong& lMSB() const { return nodeInfo->lMSB; }
|
|
extLong& lMSB() { return nodeInfo->lMSB; }
|
|
|
|
// const extLong& length() const { return nodeInfo->length; }
|
|
// extLong& length() { return nodeInfo->length; }
|
|
|
|
const extLong& measure() const { return nodeInfo->measure; }
|
|
extLong& measure() { return nodeInfo->measure; }
|
|
|
|
const extLong& high() const { return nodeInfo->high; }
|
|
extLong& high() { return nodeInfo->high; }
|
|
|
|
const extLong& low() const { return nodeInfo->low; }
|
|
extLong& low() { return nodeInfo->low; }
|
|
|
|
const extLong& lc() const { return nodeInfo->lc; }
|
|
extLong& lc() { return nodeInfo->lc; }
|
|
|
|
const extLong& tc() const { return nodeInfo->tc; }
|
|
extLong& tc() { return nodeInfo->tc; }
|
|
|
|
const extLong& v2p() const { return nodeInfo->v2p; }
|
|
extLong& v2p() { return nodeInfo->v2p; }
|
|
|
|
const extLong& v2m() const { return nodeInfo->v2m; }
|
|
extLong& v2m() { return nodeInfo->v2m; }
|
|
|
|
extLong v2() const { return v2p()-v2m(); }
|
|
|
|
const extLong& v5p() const { return nodeInfo->v5p; }
|
|
extLong& v5p() { return nodeInfo->v5p; }
|
|
|
|
const extLong& v5m() const { return nodeInfo->v5m; }
|
|
extLong& v5m() { return nodeInfo->v5m; }
|
|
|
|
extLong v5() const { return v5p()-v5m(); }
|
|
|
|
const extLong& u25() const { return nodeInfo->u25; }
|
|
extLong& u25() { return nodeInfo->u25; }
|
|
|
|
const extLong& l25() const { return nodeInfo->l25; }
|
|
extLong& l25() { return nodeInfo->l25; }
|
|
|
|
const int& ratFlag() const { return nodeInfo->ratFlag; }
|
|
int& ratFlag() { return nodeInfo->ratFlag; }
|
|
|
|
const BigRat* ratValue() const { return nodeInfo->ratValue; }
|
|
BigRat*& ratValue() { return nodeInfo->ratValue; }
|
|
|
|
/// Get BigFloat
|
|
BigInt BigIntValue();
|
|
BigRat BigRatValue();
|
|
BigFloat BigFloatValue();
|
|
/// represent as a string in decimal value
|
|
// toString() Joaquin Grech 31/5/2003
|
|
std::string toString(long prec=defOutputDigits, bool sci=false) const
|
|
{ return nodeInfo->appValue.toString(prec,sci); }
|
|
//@}
|
|
|
|
/// \name Debug functions
|
|
//@{
|
|
/// dump the contents in this DAG node
|
|
const std::string dump(int = OPERATOR_VALUE) const;
|
|
/// print debug information in list mode
|
|
virtual void debugList(int level, int depthLimit) const = 0;
|
|
/// print debug information in tree mode
|
|
virtual void debugTree(int level, int indent, int depthLimit) const = 0;
|
|
//@}
|
|
|
|
/// \name I/O Stream
|
|
//@{
|
|
friend std::ostream& operator<<(std::ostream&, ExprRep&);
|
|
//@}
|
|
|
|
CORE_MEMORY(ExprRep)
|
|
|
|
private:
|
|
unsigned refCount; // reference count
|
|
|
|
public:
|
|
enum {OPERATOR_ONLY, VALUE_ONLY, OPERATOR_VALUE, FULL_DUMP};
|
|
|
|
NodeInfo* nodeInfo; ///< node information
|
|
filteredFp ffVal; ///< filtered value
|
|
|
|
/// \name Approximation Functions
|
|
//@{
|
|
/// initialize nodeInfo
|
|
virtual void initNodeInfo() = 0;
|
|
/// compute the sign, uMSB, lMSB, etc.
|
|
virtual void computeExactFlags() = 0;
|
|
/// compute the minimal root bound
|
|
extLong computeBound();
|
|
/// driver function to approximate
|
|
void approx(const extLong& relPrec, const extLong& absPrec);
|
|
/// compute an approximate value satifying the specified precisions
|
|
virtual void computeApproxValue(const extLong&, const extLong&) = 0;
|
|
/// Test whether the current approx. value satisfies [relPrec, absPrec]
|
|
bool withinKnownPrecision(const extLong&, const extLong&);
|
|
//@}
|
|
|
|
/// \name Misc Functions
|
|
//@{
|
|
/// reduce current node
|
|
void reduceToBigRat(const BigRat&);
|
|
/// reduce current node
|
|
void reduceTo(const ExprRep*);
|
|
/// reduce current node to zero
|
|
void reduceToZero();
|
|
/// return operator string
|
|
virtual const std::string op() const { return "UNKNOWN"; }
|
|
//@}
|
|
|
|
/// \name Degree Bound Functions
|
|
//@{
|
|
/// compute "d_e" based on # of sqrts
|
|
extLong degreeBound();
|
|
/// count actually computes the degree bound of current node.
|
|
virtual extLong count() = 0;
|
|
/// reset the flag "visited"
|
|
virtual void clearFlag() = 0;
|
|
//@}
|
|
#ifdef DEBUG
|
|
virtual unsigned long dagSize() = 0;
|
|
virtual void fullClearFlag() = 0;
|
|
#endif
|
|
};//ExprRep
|
|
|
|
/// \class ConstRep
|
|
/// \brief constant node
|
|
class ConstRep : public ExprRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// default constructor
|
|
ConstRep() {}
|
|
/// destructor
|
|
~ConstRep() {}
|
|
//@}
|
|
|
|
/// \name Debug Functions
|
|
//@{
|
|
/// print debug information in list mode
|
|
void debugList(int level, int depthLimit) const;
|
|
/// print debug information in tree mode
|
|
void debugTree(int level, int indent, int depthLimit) const;
|
|
//@}
|
|
CORE_MEMORY(ConstRep)
|
|
protected:
|
|
/// initialize nodeInfo
|
|
virtual void initNodeInfo();
|
|
/// return operator in string
|
|
const std::string op() const { return "C"; }
|
|
/// count returns the degree of current node
|
|
extLong count() { return d_e(); }
|
|
/// clear visited flag
|
|
void clearFlag() { visited() = false; }
|
|
#ifdef DEBUG
|
|
unsigned long dagSize();
|
|
void fullClearFlag();
|
|
#endif
|
|
};
|
|
|
|
/// \class ConstDoubleRep
|
|
/// \brief constant node
|
|
class ConstDoubleRep : public ConstRep{
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// default constructor
|
|
ConstDoubleRep() { }
|
|
/// constructor for all \c double type
|
|
ConstDoubleRep(double d) { ffVal = d; }
|
|
/// destructor
|
|
~ConstDoubleRep() {}
|
|
//@}
|
|
CORE_MEMORY(ConstDoubleRep)
|
|
protected:
|
|
/// compute sign and MSB
|
|
void computeExactFlags();
|
|
/// compute approximation value
|
|
void computeApproxValue(const extLong&, const extLong&);
|
|
};
|
|
|
|
/// \class ConstRealRep
|
|
/// \brief constant node
|
|
class ConstRealRep : public ConstRep{
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// default constructor
|
|
ConstRealRep() : value(CORE_REAL_ZERO) { }
|
|
/// constructor for all \c Real type
|
|
ConstRealRep(const Real &);
|
|
/// destructor
|
|
~ConstRealRep() {}
|
|
//@}
|
|
CORE_MEMORY(ConstRealRep)
|
|
private:
|
|
Real value; ///< internal representation of node
|
|
protected:
|
|
/// compute sign and MSB
|
|
void computeExactFlags();
|
|
/// compute approximation value
|
|
void computeApproxValue(const extLong&, const extLong&);
|
|
};
|
|
|
|
/// \class Constant Polynomial Node
|
|
/// \brief template class where NT is supposed to be some number type
|
|
template <class NT>
|
|
class ConstPolyRep : public ConstRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// default constructor
|
|
ConstPolyRep() { }
|
|
|
|
/// constructor for Polynomial
|
|
ConstPolyRep(const Polynomial<NT>& p, int n) : ss(p) {
|
|
// isolate roots using Sturm Sequences
|
|
I = ss.isolateRoot(n);
|
|
// check whether n-th root exists
|
|
if (I.first == 1 && I.second == 0) {
|
|
std::cerr << "error! root index out of bound." << std::endl;
|
|
abort();
|
|
}
|
|
// test if the root isolated in I is 0:
|
|
if ((I.first == 0)&&(I.second == 0))
|
|
ffVal = 0;
|
|
else
|
|
ffVal = computeFilteredValue();
|
|
}
|
|
|
|
/// constructor for Polynomial
|
|
ConstPolyRep(const Polynomial<NT>& p, const BFInterval& II) : ss(p), I(II) {
|
|
if (ss.numberOfRoots(I.first, I.second) != 1) {
|
|
std::cerr << "error! non-isolating interval." << std::endl;
|
|
abort();
|
|
}
|
|
ffVal = computeFilteredValue();
|
|
}
|
|
|
|
/// destructor
|
|
~ConstPolyRep() {}
|
|
//@}
|
|
CORE_MEMORY(ConstPolyRep)
|
|
private:
|
|
Sturm<NT> ss; ///< internal Sturm sequences
|
|
BFInterval I; ///< current interval contains the real value
|
|
filteredFp computeFilteredValue() {
|
|
// refine initial interval to absolute error of 2^(lMSB(k)-54)
|
|
// where k is a lower bound on the root (use Cauchy Lower Bound here).
|
|
// Hence, the precision we pass to refine should be 54-lMSB(k).
|
|
|
|
// refine with newton (new method)
|
|
I = ss.newtonRefine(I, 54-(ss.seq[0].CauchyLowerBound()).lMSB().asLong());
|
|
|
|
//return I.first.doubleValue(); // NOTE: This is not quite right!
|
|
// It should be "centralize" which should set
|
|
// the error bit correctly.
|
|
// E.g., radical(4,2) will print wrongly.
|
|
if ((I.first == 0) && (I.second == 0)) // Checkfor zero value
|
|
return filteredFp(0);
|
|
BigFloat x = centerize(I.first, I.second);
|
|
double val = x.doubleValue();
|
|
long ee = x.exp()*CHUNK_BIT;
|
|
unsigned long err = ee > 0 ? (x.err() << ee) : (x.err() >> (-ee));
|
|
double max = core_abs(val) + err;
|
|
int ind = ((BigInt(x.err()) << 53) / (x.m() + x.err())).longValue();
|
|
return filteredFp(val, max, ind);
|
|
}
|
|
|
|
protected:
|
|
void initNodeInfo() {
|
|
nodeInfo = new NodeInfo();
|
|
d_e() = ss.seq[0].getTrueDegree(); // return degree of the polynomial
|
|
}
|
|
/// compute sign and MSB
|
|
void computeExactFlags() {
|
|
|
|
if ((I.first == 0) && (I.second == 0)) {
|
|
reduceToZero();
|
|
return;
|
|
} else if (I.second > 0) {
|
|
uMSB() = I.second.uMSB();
|
|
lMSB() = I.first.lMSB();
|
|
sign() = 1;
|
|
} else { // we know that I.first < 0
|
|
lMSB() = I.second.lMSB();
|
|
uMSB() = I.first.uMSB();
|
|
sign() = -1;
|
|
}
|
|
// length() = 1+ ss.seq[0].length().uMSB();
|
|
measure() = 1+ ss.seq[0].length().uMSB(); // since measure<= length
|
|
|
|
// compute u25, l25, v2p, v2m, v5p, v5m
|
|
v2p() = v2m() = v5p() = v5m() = 0;
|
|
u25() = 1+ss.seq[0].CauchyUpperBound().uMSB();
|
|
l25() = ceilLg(ss.seq[0].getLeadCoeff()); // assumed coeff is integer!!
|
|
|
|
// compute high, low, lc, tc
|
|
high() = u25();
|
|
low() = - (ss.seq[0].CauchyLowerBound().lMSB()); // note the use of negative
|
|
lc() = l25();
|
|
tc() = ceilLg(ss.seq[0].getTailCoeff());
|
|
|
|
// no rational reduction
|
|
if (rationalReduceFlag) ratFlag() = -1;
|
|
|
|
flagsComputed() = true;
|
|
appValue()=centerize(I.first, I.second);// set an initial value for appValue
|
|
}
|
|
/// compute approximation value
|
|
void computeApproxValue(const extLong& relPrec, const extLong& absPrec) {
|
|
extLong pr = -lMSB() + relPrec;
|
|
extLong p = pr < absPrec ? pr : absPrec;
|
|
|
|
// bisection sturm (old method)
|
|
//I = ss.refine(I, p.asLong()+1);
|
|
|
|
// refine with newton (new method)
|
|
I = ss.newtonRefine(I, p.asLong()+1);
|
|
appValue() = centerize(I.first, I.second);
|
|
}
|
|
};
|
|
/// \class UnaryOpRep
|
|
/// \brief unary operator node
|
|
class UnaryOpRep : public ExprRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// constructor
|
|
UnaryOpRep(ExprRep* c) : child(c) { child->incRefCount(); }
|
|
/// destructor
|
|
virtual ~UnaryOpRep() { child->decRefCount(); }
|
|
//@}
|
|
|
|
/// \name Debug Functions
|
|
//@{
|
|
/// print debug information in list mode
|
|
void debugList(int level, int depthLimit) const;
|
|
/// print debug information in tree mode
|
|
void debugTree(int level, int indent, int depthLimit) const;
|
|
//@}
|
|
|
|
CORE_MEMORY(UnaryOpRep)
|
|
protected:
|
|
ExprRep* child; ///< pointer to its child node
|
|
/// initialize nodeInfo
|
|
virtual void initNodeInfo();
|
|
/// clear visited flag
|
|
void clearFlag();
|
|
#ifdef DEBUG
|
|
unsigned long dagSize();
|
|
void fullClearFlag();
|
|
#endif
|
|
};
|
|
|
|
/// \class NegRep
|
|
/// \brief unary minus operator node
|
|
class NegRep : public UnaryOpRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// constructor
|
|
NegRep(ExprRep* c) : UnaryOpRep(c)
|
|
{
|
|
ffVal = - child->ffVal;
|
|
}
|
|
/// destructor
|
|
~NegRep() {}
|
|
//@}
|
|
|
|
CORE_MEMORY(NegRep)
|
|
protected:
|
|
/// compute sign and MSB
|
|
void computeExactFlags();
|
|
/// compute approximation value
|
|
void computeApproxValue(const extLong&, const extLong&);
|
|
/// return operator in string
|
|
const std::string op() const { return "Neg"; }
|
|
/// count computes the degree of current node, i.e., d_e().
|
|
/** This is now a misnomer, but historically accurate.
|
|
*/
|
|
extLong count();
|
|
};
|
|
|
|
/// \class SqrtRep
|
|
/// \brief squartroot operator node
|
|
class SqrtRep : public UnaryOpRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// constructor
|
|
SqrtRep(ExprRep* c) : UnaryOpRep(c)
|
|
{
|
|
ffVal = (child->ffVal).sqrt();
|
|
}
|
|
/// destructor
|
|
~SqrtRep() {}
|
|
//@}
|
|
|
|
CORE_MEMORY(SqrtRep)
|
|
protected:
|
|
/// compute sign and MSB
|
|
void computeExactFlags();
|
|
/// compute approximation value
|
|
void computeApproxValue(const extLong&, const extLong&);
|
|
/// return operator in string
|
|
const std::string op() const { return "Sqrt"; }
|
|
/// count computes the degree of current node, i.e., d_e().
|
|
/** This is now a misnomer, but historically accurate.
|
|
*/
|
|
extLong count();
|
|
};
|
|
|
|
/// \class BinOpRep
|
|
/// \brief binary operator node
|
|
class BinOpRep : public ExprRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// constructor
|
|
BinOpRep(ExprRep* f, ExprRep* s) : first(f), second(s)
|
|
{ first->incRefCount(); second->incRefCount(); }
|
|
/// destructor
|
|
virtual ~BinOpRep()
|
|
{ first->decRefCount(); second->decRefCount(); }
|
|
//@}
|
|
|
|
/// \name Debug Functions
|
|
//@{
|
|
/// print debug information in list mode
|
|
void debugList(int level, int depthLimit) const;
|
|
/// print debug information in tree mode
|
|
void debugTree(int level, int indent, int depthLimit) const;
|
|
//@}
|
|
|
|
CORE_MEMORY(BinOpRep)
|
|
protected:
|
|
ExprRep* first; ///< first operand
|
|
ExprRep* second; ///< second operand
|
|
|
|
/// initialize nodeInfo
|
|
virtual void initNodeInfo();
|
|
/// clear visited flags
|
|
void clearFlag();
|
|
/// count computes the degree of current node, i.e., d_e().
|
|
/** This is now a misnomer, but historically accurate.
|
|
*/
|
|
extLong count();
|
|
#ifdef DEBUG
|
|
unsigned long dagSize();
|
|
void fullClearFlag();
|
|
#endif
|
|
};
|
|
|
|
/// \struct Add
|
|
/// \brief "functor" class used as parameter to AddSubRep<>
|
|
struct Add {
|
|
/// name
|
|
static const char* name;
|
|
|
|
/// unary operator
|
|
template <class T>
|
|
const T& operator()(const T& t) const
|
|
{ return t; }
|
|
|
|
/// binary operator
|
|
template <class T>
|
|
T operator()(const T& a, const T& b) const
|
|
{ return a+b; }
|
|
};
|
|
|
|
/// \struct Sub
|
|
/// \brief "functor" class used as parameter to AddSubRep<>
|
|
struct Sub {
|
|
/// name
|
|
static const char* name;
|
|
|
|
/// unary operator
|
|
template <class T>
|
|
T operator()(const T& t) const
|
|
{ return -t; }
|
|
|
|
/// binary operator
|
|
template <class T>
|
|
T operator()(const T& a, const T& b) const
|
|
{ return a-b; }
|
|
};
|
|
|
|
/// \class AddSubRep
|
|
/// \brief template class where operator is supposed to be Add or Sub
|
|
template <class Operator>
|
|
class AddSubRep : public BinOpRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// constructor
|
|
AddSubRep(ExprRep* f, ExprRep* s) : BinOpRep(f, s)
|
|
{
|
|
ffVal = Op(first->ffVal, second->ffVal);
|
|
}
|
|
/// destructor
|
|
~AddSubRep() {}
|
|
//@}
|
|
|
|
CORE_MEMORY(AddSubRep)
|
|
protected:
|
|
/// compute sign and MSB
|
|
void computeExactFlags();
|
|
/// compute approximation value
|
|
void computeApproxValue(const extLong&, const extLong&);
|
|
/// return operator in string
|
|
const std::string op() const { return Operator::name; }
|
|
private:
|
|
static Operator Op;
|
|
};
|
|
|
|
template <class Operator>
|
|
Operator AddSubRep<Operator>::Op;
|
|
|
|
/// \typedef AddRep
|
|
/// \brief AddRep for easy of use
|
|
typedef AddSubRep<Add> AddRep;
|
|
|
|
/// \typedef SubRep
|
|
/// \brief SuRep for easy of use
|
|
typedef AddSubRep<Sub> SubRep;
|
|
|
|
/// \class MultRep
|
|
/// \brief multiplication operator node
|
|
class MultRep : public BinOpRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// constructor
|
|
MultRep(ExprRep* f, ExprRep* s) : BinOpRep(f, s)
|
|
{
|
|
ffVal = first->ffVal * second->ffVal;
|
|
}
|
|
/// destructor
|
|
~MultRep() {}
|
|
//@}
|
|
|
|
CORE_MEMORY(MultRep)
|
|
protected:
|
|
/// compute sign and MSB
|
|
void computeExactFlags();
|
|
/// compute approximation value
|
|
void computeApproxValue(const extLong&, const extLong&);
|
|
/// return operator in string
|
|
const std::string op() const { return "*"; }
|
|
};
|
|
|
|
/// \class DivRep
|
|
/// \brief division operator node
|
|
class DivRep : public BinOpRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// constructor
|
|
DivRep(ExprRep* f, ExprRep* s) : BinOpRep(f, s)
|
|
{
|
|
ffVal = first->ffVal / second->ffVal;
|
|
}
|
|
/// destructor
|
|
~DivRep() {}
|
|
//@}
|
|
|
|
CORE_MEMORY(DivRep)
|
|
protected:
|
|
/// compute sign and MSB
|
|
void computeExactFlags();
|
|
/// compute approximation value
|
|
void computeApproxValue(const extLong&, const extLong&);
|
|
/// return operator in string
|
|
const std::string op() const { return "/"; }
|
|
};
|
|
|
|
// inline functions
|
|
inline int ExprRep::getExactSign() {
|
|
if (!nodeInfo) initNodeInfo();
|
|
|
|
if (!flagsComputed()) {
|
|
degreeBound();
|
|
#ifdef DEBUG
|
|
dagSize();
|
|
fullClearFlag();
|
|
#endif
|
|
computeExactFlags();
|
|
}
|
|
return sign();
|
|
}
|
|
|
|
// Chee, 7/17/02: degreeBound() function is now
|
|
// taken out of "computeExactFlags()
|
|
inline int ExprRep::getSign() {
|
|
if (ffVal.isOK())
|
|
return ffVal.sign();
|
|
else
|
|
return getExactSign();
|
|
}
|
|
|
|
// you need force to approximate before call these functions!!
|
|
inline BigInt ExprRep::BigIntValue()
|
|
{ return getAppValue().BigIntValue(); }
|
|
|
|
inline BigRat ExprRep::BigRatValue()
|
|
{ return getAppValue().BigRatValue(); }
|
|
|
|
inline BigFloat ExprRep::BigFloatValue()
|
|
{ return getAppValue().BigFloatValue(); }
|
|
CORE_END_NAMESPACE
|
|
#endif
|