cgal/Packages/Spatial_searching/include/CGAL/Euclidean_distance_sphere_p...

114 lines
3.1 KiB
C++

// ======================================================================
//
// Copyright (c) 2002 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release : $CGAL_Revision: CGAL-2.5-I-99 $
// release_date : $CGAL_Date: 2003/05/23 $
//
// file : include/CGAL/Euclidean_distance_sphere_point.h
// package : ASPAS (3.12)
// maintainer : Hans Tangelder <hanst@cs.uu.nl>
// revision : 2.4
// revision_date : 2002/16/08
// authors : Hans Tangelder (<hanst@cs.uu.nl>)
// coordinator : Utrecht University
//
// ======================================================================
#ifndef CGAL_EUCLIDEAN_DISTANCE_SPHERE_POINT_H
#define CGAL_EUCLIDEAN_DISTANCE_SPHERE_POINT_H
#include <CGAL/Kd_tree_rectangle.h>
namespace CGAL {
template <class QueryItem, class Point>
class Euclidean_distance_sphere_point {
public:
typedef typename Kernel_traits<Point>::Kernel::FT NT;
private:
unsigned int the_dimension;
public:
// default constructor
Euclidean_distance_sphere_point() {
Point p;
the_dimension=p.dimension();
assert(the_dimension>0);
}
Euclidean_distance_sphere_point(const int d) : the_dimension(d) {}
~Euclidean_distance_sphere_point() {}
inline NT distance(const QueryItem& q, const Point& p) const {
Point c=q.center();
NT distance = NT(0);
for (unsigned int i = 0; i < the_dimension; ++i)
distance += (c[i]-p[i])*(c[i]-p[i]);
distance += -q.squared_radius();
if (distance<0) distance=NT(0);
return distance;
}
inline NT min_distance_to_queryitem(const QueryItem& q,
const Kd_tree_rectangle<NT>& r) const {
Point c=q.center();
NT distance = NT(0);
for (unsigned int i = 0; i < the_dimension; ++i) {
if (c[i] < r.min_coord(i))
distance +=
(r.min_coord(i)-c[i])*(r.min_coord(i)-c[i]);
if (c[i] > r.max_coord(i))
distance +=
(c[i]-r.max_coord(i))*(c[i]-r.max_coord(i));
};
distance += -q.squared_radius();
if (distance<0) distance=NT(0);
return distance;
}
inline NT max_distance_to_queryitem(const QueryItem& q,
const Kd_tree_rectangle<NT>& r) const {
Point c=q.center();
NT distance=NT(0);
for (unsigned int i = 0; i < the_dimension; ++i) {
if (c[i] <= (r.min_coord(i)+r.max_coord(i))/NT(2.0))
distance += (r.max_coord(i)-c[i])*(r.max_coord(i)-c[i]);
else
distance += (c[i]-r.min_coord(i))*(c[i]-r.min_coord(i));
};
distance += -q.squared_radius();
if (distance<0) distance=NT(0);
return distance;
}
inline NT transformed_distance(NT d) const {
return d*d;
}
inline NT inverse_of_transformed_distance(NT d) const {
return CGAL::sqrt(d);
}
}; // class Euclidean_distance_sphere_point
} // namespace CGAL
#endif // EUCLIDEAN_DISTANCE_SPHERE_POINT_H