cgal/Packages/Spatial_searching/include/CGAL/Fuzzy_sphere_d.h

117 lines
3.2 KiB
C++
Executable File

// ======================================================================
//
// Copyright (c) 2002 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release : $CGAL_Revision: CGAL-2.5-I-99 $
// release_date : $CGAL_Date: 2003/05/23 $
//
// file : include/CGAL/Fuzzy_sphere_d.h
// package : ASPAS (3.12)
// maintainer : Hans Tangelder <hanst@cs.uu.nl>
// revision : 3.0
// revision_date : 2003/07/10
// authors : Hans Tangelder (<hanst@cs.uu.nl>)
// coordinator : Utrecht University
//
// ======================================================================
#ifndef CGAL_FUZZY_SPHERE_D_H
#define CGAL_FUZZY_SPHERE_D_H
#include <CGAL/Kd_tree_rectangle.h>
namespace CGAL {
template <class Point>
class Fuzzy_sphere_d{
public:
typedef typename Kernel_traits<Point>::Kernel::FT NT;
private:
Point c;
NT r;
NT eps;
unsigned int dim;
public:
// default constructor
Fuzzy_sphere_d() {}
// constructor
Fuzzy_sphere_d(Point center, NT radius, NT epsilon=NT(0)) :
c(center), r(radius), eps(epsilon), dim(c.dimension())
{ // avoid problems if eps > r
if (eps>r) eps=r;
}
bool contains(const Point& p) const {
// test whether the squared distance
// between P and c
// is at most the squared_radius
NT squared_radius = r*r;
NT distance=NT(0);
for (unsigned int i = 0;
(i < dim) && (distance <= squared_radius); ++i) {
distance +=
(c[i]-p[i])*(c[i]-p[i]);
}
return (distance < squared_radius);
}
bool inner_range_intersects(const Kd_tree_rectangle<NT>* rectangle) const {
// test whether the interior of a sphere
// with radius (r-eps) intersects r, i.e.
// if the minimal distance of r to c is less than r-eps
NT distance = NT(0);
NT squared_radius = (r-eps)*(r-eps);
for (unsigned int i = 0; (i < dim) && (distance < squared_radius); ++i) {
if (c[i] < rectangle->min_coord(i))
distance +=
(rectangle->min_coord(i)-c[i])*(rectangle->min_coord(i)-c[i]);
if (c[i] > rectangle->max_coord(i))
distance +=
(c[i]-rectangle->max_coord(i))*(c[i]-rectangle->max_coord(i));
}
return (distance < squared_radius);
}
bool outer_range_is_contained_by(const Kd_tree_rectangle<NT>* rectangle) const {
// test whether the interior of a sphere
// with radius (r+eps) is contained by r, i.e.
// if the minimal distance of the boundary of r
// to c is less than r+eps
NT distance=NT(0);
NT squared_radius = (r+eps)*(r+eps);
for (unsigned int i = 0; (i < dim) && (distance < squared_radius) ; ++i) {
if (c[i] <= (rectangle->min_coord(i)+rectangle->max_coord(i))/NT(2))
distance +=
(rectangle->max_coord(i)-c[i])*(rectangle->max_coord(i)-c[i]);
else
distance += (c[i]-rectangle->min_coord(i))*(c[i]-rectangle->min_coord(i));
}
return (distance < squared_radius);
}
~Fuzzy_sphere_d() {}
}; // class Fuzzy_sphere_d
} // namespace CGAL
#endif // FUZZY_SPHERE_D_H