mirror of https://github.com/CGAL/cgal
293 lines
11 KiB
C++
293 lines
11 KiB
C++
// Copyright (c) 2002,2011 Utrecht University (The Netherlands).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org).
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
|
|
//
|
|
//
|
|
// Author(s) : Gael Guennebaud (gael.guennebaud@inria.fr),
|
|
// Hans Tangelder (<hanst@cs.uu.nl>),
|
|
// Clement Jamin (clement.jamin.pro@gmail.com)
|
|
|
|
#ifndef CGAL_ORTHOGONAL_K_NEIGHBOR_SEARCH_H
|
|
#define CGAL_ORTHOGONAL_K_NEIGHBOR_SEARCH_H
|
|
|
|
#include <CGAL/license/Spatial_searching.h>
|
|
|
|
#include <CGAL/disable_warnings.h>
|
|
|
|
#include <CGAL/Spatial_searching/internal/K_neighbor_search.h>
|
|
#include <CGAL/Spatial_searching/internal/Search_helpers.h>
|
|
|
|
#include <iterator> // for std::distance
|
|
|
|
namespace CGAL {
|
|
|
|
template <class SearchTraits,
|
|
class Distance= typename internal::Spatial_searching_default_distance<SearchTraits>::type,
|
|
class Splitter= Sliding_midpoint<SearchTraits> ,
|
|
class Tree= Kd_tree<SearchTraits, Splitter, Tag_true, Tag_false> >
|
|
class Orthogonal_k_neighbor_search: public internal::K_neighbor_search<SearchTraits,Distance,Splitter,Tree>
|
|
{
|
|
typedef internal::K_neighbor_search<SearchTraits,Distance,Splitter,Tree> Base;
|
|
typedef typename Tree::Point_d Point;
|
|
|
|
public:
|
|
typedef typename Base::FT FT;
|
|
|
|
private:
|
|
typename SearchTraits::Cartesian_const_iterator_d query_object_it;
|
|
|
|
internal::Distance_helper<Distance, SearchTraits> m_distance_helper;
|
|
std::vector<FT> dists;
|
|
int m_dim;
|
|
Tree const& m_tree;
|
|
|
|
public:
|
|
|
|
Orthogonal_k_neighbor_search(const Tree& tree, const typename Base::Query_item& q,
|
|
unsigned int k=1, FT Eps=FT(0.0), bool Search_nearest=true, const Distance& d=Distance(),bool sorted=true)
|
|
: Base(q,k,Eps,Search_nearest,d),
|
|
m_distance_helper(this->distance_instance, tree.traits()),
|
|
m_tree(tree)
|
|
{
|
|
if (tree.empty()) return;
|
|
|
|
typename SearchTraits::Construct_cartesian_const_iterator_d construct_it=tree.traits().construct_cartesian_const_iterator_d_object();
|
|
query_object_it = construct_it(this->query_object);
|
|
|
|
m_dim = static_cast<int>(std::distance(query_object_it, construct_it(this->query_object,0)));
|
|
|
|
dists.resize(m_dim);
|
|
for(int i=0;i<m_dim;i++)
|
|
dists[i]=0;
|
|
|
|
FT distance_to_root;
|
|
if (this->search_nearest){
|
|
distance_to_root = this->distance_instance.min_distance_to_rectangle(q, tree.bounding_box(),dists);
|
|
compute_nearest_neighbors_orthogonally(tree.root(), distance_to_root);
|
|
}
|
|
else {
|
|
distance_to_root = this->distance_instance.max_distance_to_rectangle(q, tree.bounding_box(),dists);
|
|
compute_furthest_neighbors_orthogonally(tree.root(), distance_to_root);
|
|
}
|
|
|
|
if (sorted) this->queue.sort();
|
|
}
|
|
private:
|
|
|
|
// With cache
|
|
void search_nearest_in_leaf(typename Tree::Leaf_node_const_handle node, Tag_true)
|
|
{
|
|
typename Tree::iterator it_node_point = node->begin(), it_node_point_end = node->end();
|
|
typename std::vector<FT>::const_iterator cache_point_begin = m_tree.cache_begin() + m_dim*(it_node_point - m_tree.begin());
|
|
// As long as the queue is not full, the node is just inserted
|
|
for (; !this->queue.full() && it_node_point != it_node_point_end; ++it_node_point)
|
|
{
|
|
this->number_of_items_visited++;
|
|
|
|
FT distance_to_query_object =
|
|
m_distance_helper.transformed_distance_from_coordinates(
|
|
this->query_object, *it_node_point, cache_point_begin, cache_point_begin + m_dim);
|
|
this->queue.insert(std::make_pair(&(*it_node_point), distance_to_query_object));
|
|
|
|
cache_point_begin += m_dim;
|
|
}
|
|
// Now that the queue is full, we can gain time by keeping track
|
|
// of the current worst distance to interrupt the distance computation earlier
|
|
FT worst_dist = this->queue.top().second;
|
|
for (; it_node_point != it_node_point_end; ++it_node_point)
|
|
{
|
|
this->number_of_items_visited++;
|
|
|
|
FT distance_to_query_object =
|
|
m_distance_helper.interruptible_transformed_distance(
|
|
this->query_object, *it_node_point, cache_point_begin, cache_point_begin + m_dim, worst_dist);
|
|
|
|
if (distance_to_query_object < worst_dist)
|
|
{
|
|
this->queue.insert(std::make_pair(&(*it_node_point), distance_to_query_object));
|
|
worst_dist = this->queue.top().second;
|
|
}
|
|
|
|
cache_point_begin += m_dim;
|
|
}
|
|
}
|
|
|
|
// Without cache
|
|
void search_nearest_in_leaf(typename Tree::Leaf_node_const_handle node, Tag_false)
|
|
{
|
|
typename Tree::iterator it_node_point = node->begin(), it_node_point_end = node->end();
|
|
// As long as the queue is not full, the node is just inserted
|
|
for (; !this->queue.full() && it_node_point != it_node_point_end; ++it_node_point)
|
|
{
|
|
this->number_of_items_visited++;
|
|
|
|
FT distance_to_query_object =
|
|
this->distance_instance.transformed_distance(this->query_object, *it_node_point);
|
|
this->queue.insert(std::make_pair(&(*it_node_point), distance_to_query_object));
|
|
}
|
|
// Now that the queue is full, we can gain time by keeping track
|
|
// of the current worst distance to interrupt the distance computation earlier
|
|
FT worst_dist = this->queue.top().second;
|
|
for (; it_node_point != it_node_point_end; ++it_node_point)
|
|
{
|
|
this->number_of_items_visited++;
|
|
|
|
FT distance_to_query_object =
|
|
m_distance_helper.interruptible_transformed_distance(
|
|
this->query_object, *it_node_point, worst_dist);
|
|
|
|
if (distance_to_query_object < worst_dist)
|
|
{
|
|
this->queue.insert(std::make_pair(&(*it_node_point), distance_to_query_object));
|
|
worst_dist = this->queue.top().second;
|
|
}
|
|
}
|
|
}
|
|
|
|
void compute_nearest_neighbors_orthogonally(typename Base::Node_const_handle N, FT rd)
|
|
{
|
|
if (N->is_leaf())
|
|
{
|
|
// n is a leaf
|
|
typename Tree::Leaf_node_const_handle node =
|
|
static_cast<typename Tree::Leaf_node_const_handle>(N);
|
|
this->number_of_leaf_nodes_visited++;
|
|
if (node->size() > 0)
|
|
{
|
|
typename internal::Has_points_cache<Tree, internal::has_Enable_points_cache<Tree>::type::value>::type dummy;
|
|
search_nearest_in_leaf(node, dummy);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
typename Tree::Internal_node_const_handle node =
|
|
static_cast<typename Tree::Internal_node_const_handle>(N);
|
|
this->number_of_internal_nodes_visited++;
|
|
int new_cut_dim = node->cutting_dimension();
|
|
typename Base::Node_const_handle bestChild, otherChild;
|
|
FT new_off;
|
|
FT val = *(query_object_it + new_cut_dim);
|
|
FT diff1 = val - node->upper_low_value();
|
|
FT diff2 = val - node->lower_high_value();
|
|
if ((diff1 + diff2 < FT(0.0)))
|
|
{
|
|
new_off = diff1;
|
|
bestChild = node->lower();
|
|
otherChild = node->upper();
|
|
}
|
|
else // compute new distance
|
|
{
|
|
new_off = diff2;
|
|
bestChild = node->upper();
|
|
otherChild = node->lower();
|
|
}
|
|
compute_nearest_neighbors_orthogonally(bestChild, rd);
|
|
FT dst = dists[new_cut_dim];
|
|
FT new_rd = this->distance_instance.new_distance(rd, dst, new_off, new_cut_dim);
|
|
dists[new_cut_dim] = new_off;
|
|
if (this->branch_nearest(new_rd))
|
|
{
|
|
compute_nearest_neighbors_orthogonally(otherChild, new_rd);
|
|
}
|
|
dists[new_cut_dim] = dst;
|
|
}
|
|
}
|
|
|
|
// With cache
|
|
void search_furthest_in_leaf(typename Tree::Leaf_node_const_handle node, Tag_true)
|
|
{
|
|
typename Tree::iterator it_node_point = node->begin(), it_node_point_end = node->end();
|
|
typename std::vector<FT>::const_iterator cache_point_begin = m_tree.cache_begin() + m_dim*(it_node_point - m_tree.begin());
|
|
// In furthest search mode, the interruptible distance cannot be used to optimize
|
|
for (; it_node_point != it_node_point_end; ++it_node_point)
|
|
{
|
|
this->number_of_items_visited++;
|
|
|
|
FT distance_to_query_object =
|
|
m_distance_helper.transformed_distance_from_coordinates(
|
|
this->query_object, *it_node_point, cache_point_begin, cache_point_begin + m_dim);
|
|
this->queue.insert(std::make_pair(&(*it_node_point), distance_to_query_object));
|
|
|
|
cache_point_begin += m_dim;
|
|
}
|
|
}
|
|
|
|
// Without cache
|
|
void search_furthest_in_leaf(typename Tree::Leaf_node_const_handle node, Tag_false)
|
|
{
|
|
typename Tree::iterator it_node_point = node->begin(), it_node_point_end = node->end();
|
|
// In furthest search mode, the interruptible distance cannot be used to optimize
|
|
for (; it_node_point != it_node_point_end; ++it_node_point)
|
|
{
|
|
this->number_of_items_visited++;
|
|
|
|
FT distance_to_query_object =
|
|
this->distance_instance.transformed_distance(this->query_object, *it_node_point);
|
|
this->queue.insert(std::make_pair(&(*it_node_point), distance_to_query_object));
|
|
}
|
|
}
|
|
|
|
void compute_furthest_neighbors_orthogonally(typename Base::Node_const_handle N, FT rd)
|
|
{
|
|
if (N->is_leaf())
|
|
{
|
|
// n is a leaf
|
|
typename Tree::Leaf_node_const_handle node =
|
|
static_cast<typename Tree::Leaf_node_const_handle>(N);
|
|
this->number_of_leaf_nodes_visited++;
|
|
if (node->size() > 0)
|
|
{
|
|
typename internal::Has_points_cache<Tree, internal::has_Enable_points_cache<Tree>::type::value>::type dummy;
|
|
search_furthest_in_leaf(node, dummy);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
typename Tree::Internal_node_const_handle node =
|
|
static_cast<typename Tree::Internal_node_const_handle>(N);
|
|
this->number_of_internal_nodes_visited++;
|
|
int new_cut_dim=node->cutting_dimension();
|
|
typename Base::Node_const_handle bestChild, otherChild;
|
|
FT new_off;
|
|
FT val = *(query_object_it + new_cut_dim);
|
|
FT diff1 = val - node->lower_high_value();
|
|
FT diff2 = val - node->upper_low_value();
|
|
if ( (diff1 + diff2 >= FT(0.0)) )
|
|
{
|
|
new_off = node->upper_low_value()+node->upper_high_value() > val*2?
|
|
val - node->upper_high_value():
|
|
val - node->upper_low_value();
|
|
bestChild = node->lower();
|
|
otherChild = node->upper();
|
|
}
|
|
else // compute new distance
|
|
{
|
|
new_off = node->lower_low_value()+node->lower_high_value() > val*2 ?
|
|
val - node->lower_high_value():
|
|
val - node->lower_low_value();
|
|
bestChild = node->upper();
|
|
otherChild = node->lower();
|
|
}
|
|
compute_furthest_neighbors_orthogonally(bestChild,rd);
|
|
FT dst=dists[new_cut_dim];
|
|
FT new_rd = this->distance_instance.new_distance(rd,dst,new_off,new_cut_dim);
|
|
dists[new_cut_dim]=new_off;
|
|
if (this->branch_furthest(new_rd))
|
|
compute_furthest_neighbors_orthogonally(otherChild, new_rd);
|
|
dists[new_cut_dim]=dst;
|
|
}
|
|
}
|
|
|
|
}; // class
|
|
|
|
} // namespace CGAL
|
|
|
|
#include <CGAL/enable_warnings.h>
|
|
|
|
#endif // CGAL_ORTHOGONAL_K_NEIGHBOR_SEARCH_H
|