cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDi...

54 lines
1.9 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::PseudoDivision}
\ccDefinition
This \ccc{AdaptableFunctor} computes the so called {\em pseudo division}
of to polynomials $f$ and $g$.
Given $f$ and $g != 0$, compute quotient $q$ and remainder $r$
such that $D \cdot f = g \cdot q + r$ and $degree(r) < degree(g)$,
where $ D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$
\ccRefines
\ccc{AdaptableFunctor}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccTypedef{typedef void result_type;}{}\ccGlue
\ccOperations
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d f,
PolynomialTraits_d::Polynomial_d g,
PolynomialTraits_d::Polynomial_d & q,
PolynomialTraits_d::Polynomial_d & r,
PolynomialTraits_d::Coefficient & D);}{
Computes the pseudo division with respect to the outermost variable
$x_{d-1}$.
}
\begin{ccAdvanced}
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d f,
PolynomialTraits_d::Polynomial_d g,
PolynomialTraits_d::Polynomial_d & q,
PolynomialTraits_d::Polynomial_d & r,
PolynomialTraits_d::Coefficient & D,
int i);}{
Computes the pseudo division with respect to variable $x_i$.
\ccPrecond $0 \leq i < d$ }
\end{ccAdvanced}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\ccRefIdfierPage{PolynomialTraits_d::PseudoDivision}\\
\ccRefIdfierPage{PolynomialTraits_d::PseudoDivisionRemainder}\\
\ccRefIdfierPage{PolynomialTraits_d::PseudoDivisionQuotient}\\
\end{ccRefConcept}