cgal/Core/include/CGAL/CORE/geom3d/plane3d.h

160 lines
5.7 KiB
C++

/****************************************************************************
* Core Library Version 1.7, August 2004
* Copyright (c) 1995-2004 Exact Computation Project
* All rights reserved.
*
* This file is part of CORE (http://cs.nyu.edu/exact/core/).
* You can redistribute it and/or modify it under the terms of the GNU
* General Public License as published by the Free Software Foundation,
* either version 3 of the License, or (at your option) any later version.
*
* Licensees holding a valid commercial license may use this file in
* accordance with the commercial license agreement provided with the
* software.
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* $URL$
* $Id$
***************************************************************************/
/*****************************************************************
* File: plane3d.h
* Synopsis:
* Basic 3-dimensional geometry
* Author: Shubin Zhao (shubinz@cs.nyu.edu), 2001.
*
*****************************************************************
* CORE Library Version 1.4 (July 2001)
* Chee Yap <yap@cs.nyu.edu>
* Chen Li <chenli@cs.nyu.edu>
* Zilin Du <zilin@cs.nyu.edu>
*
* Copyright (c) 1995, 1996, 1998, 1999, 2000, 2001 Exact Computation Project
*
* WWW URL: http://cs.nyu.edu/exact/
* Email: exact@cs.nyu.edu
*
* $Id$
*****************************************************************/
#ifndef _PLANE3D_H_
#define _PLANE3D_H_
#include <CGAL/CORE/geom3d/point3d.h>
#include <CGAL/CORE/geom3d/line3d.h>
class Segment3d;
class Plane3d : public GeomObj{
private:
// ax + by + cz + d = 0
double a;
double b;
double c;
double d;
Vector n;
public:
/************************************************************
* constructors
************************************************************/
Plane3d(): a(0.0), b(0.0), c(0.0), d(0.0), n(0.0, 0.0, 0.0) {}
//trivial plane
Plane3d(const Plane3d & plane);
//copy constructor
Plane3d(const Point3d & p, const Vector &v);
// plane with direction v passes through point p
Plane3d(const Point3d &p1, const Point3d &p2, const Point3d &p3);
//plane passes through points p1, p2, p3
Plane3d(const Point3d &p, const Line3d &l);
//plane passes through point p and line l
Plane3d(const Point3d &p, const Segment3d &s);
//plane passes through point p and segment s
Plane3d(const Vector &v1, double d1);
// plane determined by vector and displacement
// plane determined by equation
Plane3d(double a1, double b1, double c1, double d1);
virtual ~Plane3d() {}
/************************************************************
* member functions
************************************************************/
virtual int dim() const { return 2; }
double* coeffients() const;
double A() const { return a; }
double B() const { return b; }
double C() const { return c; }
double displacement() const { return d; }
const Vector& normal() const { return n; }
// test if plane is trivial
bool isTrivial() const { return a==double(0) && b==double(0) && c==double(0); }
// apply equation of plane to a point
double apply( const Point3d& p ) const { return a*p.X()+b*p.Y()+c*p.Z()+d; }
// plane against plane predicates
bool isCoincident(const Plane3d& pl) const;
bool isParallel(const Plane3d& pl) const;
// test parallel
bool isParallel(const Line3d& l) const;
bool contains( const Point3d& p ) const;
bool contains( const Line3d& l ) const;
bool contains( const Segment3d& s ) const;
// returns the projection of p on this line
Point3d projection(const Point3d& p) const;
/** be careful of line(segment) projection
* It could be a line(segment) or point
* The function returns degenerated line(segment) in point case
**/
Line3d projection(const Line3d& l) const;
Segment3d projection(const Segment3d& s) const;
//distance
double distance( const Point3d& p ) const;
double distance( const Line3d& l ) const;
double distance( const Segment3d& s ) const;
/** intersect predicates
* later implementation may return like this:
* return dimension of intersection
* return -1 if not intersect
* return 0 if intersect on a point ... and so on.
**/
int intersects( const Line3d& l ) const;
int intersects( const Point3d& p ) const;
int intersects( const Segment3d& s ) const;
int intersects( const Plane3d& pl ) const;
// return intersection
GeomObj* intersection( const Line3d& l ) const;
GeomObj* intersection( const Segment3d& s ) const;
GeomObj* intersection( const Plane3d& pl ) const;
bool operator==(const Plane3d& pl) const { return isCoincident(pl); }
bool operator!=(const Plane3d& pl) { return !operator==(pl); }
friend std::istream& operator>>(std::istream& in, Plane3d& pl);
friend std::ostream& operator<<(std::ostream& out, const Plane3d& pl);
}; //class Plane3d
#endif