cgal/Cartesian_kernel/include/CGAL/Cartesian_converter.h

365 lines
12 KiB
C++

// Copyright (c) 2001-2004 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Sylvain Pion <Sylvain.Pion@sophia.inria.fr>
// Menelaos Karavelas <mkaravel@cse.nd.edu>
#ifndef CGAL_CARTESIAN_CONVERTER_H
#define CGAL_CARTESIAN_CONVERTER_H
// This file contains the definition of a kernel converter, based on Cartesian
// representation. It should work between *Cartesian<A> and *Cartesian<B>,
// provided you give a NT converter from A to B.
// There's a Homogeneous counterpart.
#include <CGAL/basic.h>
#include <CGAL/NT_converter.h>
#include <CGAL/Enum_converter.h>
#include <CGAL/Bbox_2.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/Origin.h>
#include <vector>
CGAL_BEGIN_NAMESPACE
// Guess which compiler needs this work around ?
namespace CGALi {
template < typename K1, typename K2 >
struct Default_converter {
typedef typename K1::FT FT1;
typedef typename K2::FT FT2;
typedef ::CGAL::NT_converter<FT1, FT2> Type;
};
} // namespace CGALi
template < class K1, class K2,
// class Converter = NT_converter<typename K1::FT, typename K2::FT> >
class Converter = typename CGALi::Default_converter<K1, K2>::Type >
class Cartesian_converter : public Enum_converter
{
typedef Enum_converter Base;
public:
typedef K1 Source_kernel;
typedef K2 Target_kernel;
typedef Converter Number_type_converter;
#ifdef CGAL_CFG_USING_BASE_MEMBER_BUG
bool operator()(bool b) const { return Base::operator()(b); }
Sign operator()(Sign s) const { return Base::operator()(s); }
Oriented_side operator()(Oriented_side os) const {
return Base::operator()(os);
}
Bounded_side operator()(Bounded_side bs) const {
return Base::operator()(bs);
}
Comparison_result operator()(Comparison_result cr) const {
return Base::operator()(cr);
}
Angle operator()(Angle a) const { return Base::operator()(a); }
#else
using Base::operator();
#endif
Cartesian_converter() // To shut up a warning with SunPRO.
: c(), k() {}
Origin
operator()(const Origin& o) const
{
return o;
}
Null_vector
operator()(const Null_vector& n) const
{
return n;
}
Bbox_2
operator()(const Bbox_2& b) const
{
return b;
}
Bbox_3
operator()(const Bbox_3& b) const
{
return b;
}
typename K2::FT
operator()(const typename K1::FT &a) const
{
return c(a);
}
typename K2::Object_2
operator()(const typename K1::Object_2 &obj) const
{
if (const typename K1::Point_2 * ptr = object_cast<typename K1::Point_2>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Vector_2 * ptr = object_cast<typename K1::Vector_2>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Direction_2 * ptr = object_cast<typename K1::Direction_2>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Segment_2 * ptr = object_cast<typename K1::Segment_2>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Ray_2 * ptr = object_cast<typename K1::Ray_2>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Line_2 * ptr = object_cast<typename K1::Line_2>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Triangle_2 * ptr = object_cast<typename K1::Triangle_2>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Iso_rectangle_2 * ptr = object_cast<typename K1::Iso_rectangle_2>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Circle_2 * ptr = object_cast<typename K1::Circle_2>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Point_3 * ptr = object_cast<typename K1::Point_3>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Vector_3 * ptr = object_cast<typename K1::Vector_3>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Direction_3 * ptr = object_cast<typename K1::Direction_3>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Segment_3 * ptr = object_cast<typename K1::Segment_3>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Ray_3 * ptr = object_cast<typename K1::Ray_3>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Line_3 * ptr = object_cast<typename K1::Line_3>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Triangle_3 * ptr = object_cast<typename K1::Triangle_3>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Tetrahedron_3 * ptr = object_cast<typename K1::Tetrahedron_3>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Iso_cuboid_3 * ptr = object_cast<typename K1::Iso_cuboid_3>(&obj)) {
return make_object(operator()(*ptr));
} else if (const typename K1::Sphere_3 * ptr = object_cast<typename K1::Sphere_3>(&obj)) {
return make_object(operator()(*ptr));
}else if (const typename K1::Plane_3 * ptr = object_cast<typename K1::Plane_3>(&obj)) {
return make_object(operator()(*ptr));
}else if (const std::vector<typename K1::Point_2> * ptr = object_cast<std::vector<typename K1::Point_2> >(&obj)) {
std::vector<typename K2::Point_2> res((*ptr).size());
for(unsigned int i=0; i < (*ptr).size(); i++){
res[i] = operator()((*ptr)[i]);
}
return make_object(res);
}
CGAL_assertion_msg(false,"Cartesian_converter is unable to determine what is wrapped in the Object");
return Object();
}
std::vector<Object>
operator()(const std::vector<Object>& v) const
{
std::vector<Object> res;
res.reserve(v.size());
for(unsigned int i = 0; i < v.size(); i++){
res[i] = operator()(v[i]);
}
return res;
}
typename K2::Point_2
operator()(const typename K1::Point_2 &a) const
{
typedef typename K2::Point_2 Point_2;
return Point_2(c(a.x()), c(a.y()));
}
typename K2::Vector_2
operator()(const typename K1::Vector_2 &a) const
{
typedef typename K2::Vector_2 Vector_2;
return Vector_2(c(a.x()), c(a.y()));
}
typename K2::Direction_2
operator()(const typename K1::Direction_2 &a) const
{
typedef typename K2::Direction_2 Direction_2;
return Direction_2(c(a.dx()), c(a.dy()));
}
typename K2::Segment_2
operator()(const typename K1::Segment_2 &a) const
{
typedef typename K2::Segment_2 Segment_2;
return Segment_2(operator()(a.source()), operator()(a.target()));
}
typename K2::Line_2
operator()(const typename K1::Line_2 &a) const
{
typedef typename K2::Line_2 Line_2;
return Line_2(c(a.a()), c(a.b()), c(a.c()));
}
typename K2::Ray_2
operator()(const typename K1::Ray_2 &a) const
{
typedef typename K2::Ray_2 Ray_2;
return Ray_2(operator()(a.source()), operator()(a.second_point()));
}
typename K2::Circle_2
operator()(const typename K1::Circle_2 &a) const
{
typedef typename K2::Circle_2 Circle_2;
return Circle_2(operator()(a.center()),
c(a.squared_radius()),
a.rep().orientation());
}
typename K2::Triangle_2
operator()(const typename K1::Triangle_2 &a) const
{
typedef typename K2::Triangle_2 Triangle_2;
return Triangle_2(operator()(a.vertex(0)),
operator()(a.vertex(1)),
operator()(a.vertex(2)));
}
typename K2::Iso_rectangle_2
operator()(const typename K1::Iso_rectangle_2 &a) const
{
typedef typename K2::Iso_rectangle_2 Iso_rectangle_2;
return Iso_rectangle_2(operator()(a.min()), operator()(a.max()));
}
typename K2::Point_3
operator()(const typename K1::Point_3 &a) const
{
typedef typename K2::Point_3 Point_3;
return Point_3(c(a.x()), c(a.y()), c(a.z()));
}
typename K2::Vector_3
operator()(const typename K1::Vector_3 &a) const
{
typedef typename K2::Vector_3 Vector_3;
return Vector_3(c(a.x()), c(a.y()), c(a.z()));
}
typename K2::Direction_3
operator()(const typename K1::Direction_3 &a) const
{
typedef typename K2::Direction_3 Direction_3;
return Direction_3(c(a.dx()), c(a.dy()), c(a.dz()));
}
typename K2::Segment_3
operator()(const typename K1::Segment_3 &a) const
{
typedef typename K2::Segment_3 Segment_3;
return Segment_3(operator()(a.source()), operator()(a.target()));
}
typename K2::Line_3
operator()(const typename K1::Line_3 &a) const
{
typedef typename K2::Line_3 Line_3;
return Line_3(operator()(a.point()), operator()(a.direction()));
}
typename K2::Ray_3
operator()(const typename K1::Ray_3 &a) const
{
typedef typename K2::Ray_3 Ray_3;
return Ray_3(operator()(a.source()), operator()(a.second_point()));
}
typename K2::Sphere_3
operator()(const typename K1::Sphere_3 &a) const
{
typedef typename K2::Sphere_3 Sphere_3;
return Sphere_3(operator()(a.center()),
c(a.squared_radius()),
a.orientation());
}
typename K2::Triangle_3
operator()(const typename K1::Triangle_3 &a) const
{
typedef typename K2::Triangle_3 Triangle_3;
return Triangle_3(operator()(a.vertex(0)),
operator()(a.vertex(1)),
operator()(a.vertex(2)));
}
typename K2::Tetrahedron_3
operator()(const typename K1::Tetrahedron_3 &a) const
{
typedef typename K2::Tetrahedron_3 Tetrahedron_3;
return Tetrahedron_3(operator()(a.vertex(0)),
operator()(a.vertex(1)),
operator()(a.vertex(2)),
operator()(a.vertex(3)));
}
typename K2::Plane_3
operator()(const typename K1::Plane_3 &a) const
{
typedef typename K2::Plane_3 Plane_3;
return Plane_3(c(a.a()), c(a.b()), c(a.c()), c(a.d()));
}
typename K2::Iso_cuboid_3
operator()(const typename K1::Iso_cuboid_3 &a) const
{
typedef typename K2::Iso_cuboid_3 Iso_cuboid_3;
return Iso_cuboid_3(operator()(a.min()), operator()(a.max()));
}
std::pair<typename K2::Point_2, typename K2::Point_2>
operator() (const std::pair<typename K1::Point_2, typename K1::Point_2>& pp) const
{
return std::make_pair(operator()(pp.first), operator()(pp.second));
}
private:
Converter c;
K2 k;
};
// Specialization when converting to the same kernel,
// to avoid making copies.
template < class K, class C >
struct Cartesian_converter <K, K, C>
{
typedef K Source_kernel;
typedef K Target_kernel;
typedef C Number_type_converter;
template < typename T >
const T& operator()(const T&t) const { return t; }
};
CGAL_END_NAMESPACE
#endif // CGAL_CARTESIAN_CONVERTER_H