cgal/Ridges_3/include/CGAL/PolyhedralSurf_neighbors.h

297 lines
10 KiB
C++

#ifndef _POLYHEDRALSURF_NEIGHBORS_H_
#define _POLYHEDRALSURF_NEIGHBORS_H_
#include <queue>
#include <algorithm>
#include <CGAL/basic.h>
CGAL_BEGIN_NAMESPACE
//---------------------------------------------------------------------------
//T_Gate : element of the priority queue. A gate is a halfedge and a
//number giving the max distance from v to the vertices of the
//triangle incident to the halfedge.
//---------------------------------------------------------------------------
template < class TriangularPolyhedralSurface > class T_Gate
{
public:
typedef typename TriangularPolyhedralSurface::Traits::FT FT;
typedef typename TriangularPolyhedralSurface::Traits::Vector_3 Vector_3;
typedef typename TriangularPolyhedralSurface::Traits::Point_3 Point_3;
typedef typename TriangularPolyhedralSurface::Vertex_handle Vertex_handle;
typedef typename TriangularPolyhedralSurface::Halfedge_handle Halfedge_handle;
T_Gate( Vertex_handle v, Halfedge_handle he);
FT& d() { return m_d;}
const FT d() const { return m_d;}
Halfedge_handle he() { return m_he;}
private:
FT m_d;
Halfedge_handle m_he;
};
//////////////IMPLEMENTATION//////////////////////////
template < class TriangularPolyhedralSurface >
T_Gate<TriangularPolyhedralSurface>::T_Gate( Vertex_handle v, Halfedge_handle he)
: m_he(he)
{
Point_3 p0 = v->point(),
p1 = he->vertex()->point(),
p2 = he->next()->vertex()->point(),
p3 = he->prev()->vertex()->point();
Vector_3 p0p1 = p0 - p1,
p0p2 = p0 - p2,
p0p3 = p0 - p3;
FT d1 = p0p1*p0p1,
d2 = p0p2*p0p2,
d3 = p0p3*p0p3;
m_d = CGAL::sqrt( (std::max)( (std::max)(d1,d2), d3) );
}
//---------------------------------------------------------------------------
// functor for priority queue
// order so than the top element is the smallest in the queue
//---------------------------------------------------------------------------
template<class g>
struct compare_gates
{
bool operator()(const g& g1,
const g& g2) const
{
return g1.d() > g2.d();
}
};
//---------------------------------------------------------------------------
//T_PolyhedralSurf_neighbors : MAIN class for computation, it uses the
//class Gate and the functor compare_gates for the definition of a
//priority queue
//---------------------------------------------------------------------------
template < class TriangularPolyhedralSurface > class T_PolyhedralSurf_neighbors
{
public:
typedef typename TriangularPolyhedralSurface::Traits::FT FT;
typedef typename TriangularPolyhedralSurface::Traits::Vector_3 Vector_3;
typedef typename TriangularPolyhedralSurface::Traits::Point_3 Point_3;
typedef typename TriangularPolyhedralSurface::Vertex_handle Vertex_handle;
typedef typename TriangularPolyhedralSurface::Halfedge_handle Halfedge_handle;
typedef typename TriangularPolyhedralSurface::Halfedge_around_vertex_circulator
Halfedge_around_vertex_circulator;
typedef typename TriangularPolyhedralSurface::Vertex_iterator Vertex_iterator;
typedef T_Gate<TriangularPolyhedralSurface> Gate;
T_PolyhedralSurf_neighbors(TriangularPolyhedralSurface& P);
// vertex_neigh stores the vertex v and its 1Ring neighbors contour
// stores halfedges, oriented CW, following the 1Ring disk border
// OneRingSize is the max distance from v to its OneRing
// neighbors. (the tag is_visited is not mofified)
void compute_one_ring(Vertex_handle v,
std::vector<Vertex_handle> &vertex_neigh,
std::list<Halfedge_handle> &contour,
FT &OneRingSize);
// call compute_one_ring and expand the contour (circle of halfedges
// CW), vertex_neigh are vertices on and inside the contour (there
// tag is_visited is set to true, but reset to false at the end),
// size is such that gates with distance less than size*OneRingSize
// are processed
void compute_neighbors(Vertex_handle v,
std::vector<Vertex_handle> &vertex_neigh,
std::list<Halfedge_handle> &contour,
FT size);
//vertex tags is_visited are set to false
void reset_is_visited_map(std::vector<Vertex_handle> &vces);
protected:
//tag to visit vertices
struct Vertex_cmp{//comparison is wrt vertex addresses
bool operator()(Vertex_handle a, Vertex_handle b) const{
return &*a < &*b;
}
};
typedef std::map<Vertex_handle, bool, Vertex_cmp> Vertex2bool_map_type;
Vertex2bool_map_type is_visited_map;
};
//////////////IMPLEMENTATION//////////////////////////
template < class TriangularPolyhedralSurface >
T_PolyhedralSurf_neighbors < TriangularPolyhedralSurface >::
T_PolyhedralSurf_neighbors(TriangularPolyhedralSurface& P)
{
//init the is_visited_map
Vertex_iterator itb = P.vertices_begin(), ite = P.vertices_end();
for(;itb!=ite;itb++) is_visited_map[itb] = false;
}
template < class TriangularPolyhedralSurface >
void T_PolyhedralSurf_neighbors < TriangularPolyhedralSurface >::
compute_one_ring(Vertex_handle v,
std::vector<Vertex_handle> &vertex_neigh,
std::list<Halfedge_handle> &contour,
FT &OneRingSize)
{
typedef typename std::list<Halfedge_handle>::iterator list_it;
vertex_neigh.push_back(v);
Halfedge_around_vertex_circulator he_circ = v->vertex_begin(),
he_end = he_circ;
do {
if ( he_circ->is_border() )//then he and he->next follow the contour CW
{contour.push_back(he_circ);
contour.push_back(he_circ->next());}
else contour.push_back(he_circ->prev()->opposite());//not border, he->prev->opp on contour CW
vertex_neigh.push_back(he_circ->opposite()->vertex());
he_circ++;
} while (he_circ != he_end);
//compute OneRingSize = distance(v, 1Ring)
OneRingSize = 0;
typename std::vector<Vertex_handle>::iterator itb = vertex_neigh.begin(),
ite = vertex_neigh.end();
itb++;//the first vertex v is the center to which distances are
//computed from, for other 1ring neighbors
Point_3 p0 = v->point(), p;
Vector_3 p0p;
FT d = OneRingSize;
for (; itb != ite; itb++){
p = (*itb)->point();
p0p = p0 - p;
d = CGAL::sqrt(p0p*p0p);
if (d > OneRingSize) OneRingSize = d;
}
}
template < class TriangularPolyhedralSurface >
void T_PolyhedralSurf_neighbors < TriangularPolyhedralSurface >::
compute_neighbors(Vertex_handle v,
std::vector<Vertex_handle> &vertex_neigh,
std::list<Halfedge_handle> &contour,
FT size)
{
FT OneRingSize;
compute_one_ring(v, vertex_neigh, contour, OneRingSize);
FT d_max = OneRingSize*size;
std::priority_queue< Gate, std::vector< Gate >, compare_gates< Gate > > GatePQ;
// tag neighbors
typename std::vector<Vertex_handle>::iterator itbv = vertex_neigh.begin(),
itev = vertex_neigh.end();
for (; itbv != itev; itbv++) is_visited_map.find(*itbv)->second = true;
// init GatePQ
typename std::list<Halfedge_handle>::iterator itb = contour.begin(),
ite = contour.end();
for (; itb != ite; itb++) {
if (!( (*itb)->is_border() )) GatePQ.push(Gate(v, *itb));
}
// init d_current
Gate firstGate = GatePQ.top();
FT d_current = firstGate.d();
// main loop
while ( !GatePQ.empty() && d_current <= d_max ) {
//debug check if the contour is closed
typename std::list<Halfedge_handle>::iterator itbc = contour.begin(),
itec = contour.end(),
h_cur, h_next;
for (; itbc != itec; itbc++)
{
h_cur = itbc;
if ( h_cur != (--contour.end()) ) {h_next = ++h_cur; h_cur--;}
else h_next = contour.begin();
assert( (*h_cur)->vertex() == (*h_next)->opposite()->vertex() );
//cout << endl << &**itbc ;
}
//debug
//cout << endl; cout << endl;
Gate gate = GatePQ.top();
GatePQ.pop();
d_current = gate.d();
Halfedge_handle he = gate.he(), he1, he2;
Vertex_handle v1;
// find the gate on the contour
typename std::list<Halfedge_handle>::iterator pos_he, pos_prev, pos_next, iter;
pos_he = find(contour.begin(), contour.end(), he);
iter = pos_he;
/**
there are different cases to expand the contour :
(case 3) he is not on the contour, nothing to do
(case 2) he is on the contour and either the previous or the next
following edge in the triangle is also on the contour, then delete
these 2 he from the contour and add the third one to the contour
and the PQ.
(case1) the vertex opposite to he is not visited, then the he is removed
from the contour, the two others are added to the contour and PQ, the
vertex is set visited.
*/
// if the gate is not encountered on the contour (case 3)
if ( pos_he == contour.end() ) continue;
// simulate a circulator on the contour:
// find the prev and next pos on coutour
if ( (++iter) != ite ) pos_next = iter;
else pos_next = contour.begin();
iter = pos_he;
if ( iter != contour.begin() ) pos_prev = --iter;
else pos_prev = --contour.end();
if ( he->next() == *pos_next )
{ // case 2a
//contour
he1 = he->prev()->opposite();
contour.insert(pos_he, he1);
contour.erase(pos_he);
contour.erase(pos_next);
//GatePQ
if ( !(he1->is_border()) ) GatePQ.push(Gate(v, he1));
continue;
}
else if ( he->prev() == (*pos_prev) )
{ // case 2b
//contour
he1 = he->next()->opposite();
contour.insert(pos_prev, he1);
contour.erase(pos_prev);
contour.erase(pos_he);
//GatePQ
if ( !(he1->is_border()) ) GatePQ.push(Gate(v, he1));
continue;
}
v1 = he->next()->vertex();
if ( !is_visited_map.find(v1)->second )
{ // case 1
//vertex
is_visited_map.find(v1)->second = true;
vertex_neigh.push_back(v1);
//contour
he1 = he->prev()->opposite();
he2 = he->next()->opposite();
contour.insert(pos_he, he1);
contour.insert(pos_he, he2);
contour.erase(pos_he);
//GatePQ
if ( !(he1->is_border()) ) GatePQ.push(Gate(v, he1));
if ( !(he2->is_border()) ) GatePQ.push(Gate(v, he2));
continue;
}
//else case non admissible
CGAL_postcondition ( "case non admissible" == 0);
}// end while
reset_is_visited_map(vertex_neigh);
}
template < class TriangularPolyhedralSurface >
void T_PolyhedralSurf_neighbors < TriangularPolyhedralSurface >::
reset_is_visited_map(std::vector<Vertex_handle> &vces)
{
typename std::vector<Vertex_handle>::iterator
itb = vces.begin(), ite = vces.end();
for (;itb != ite; itb++) is_visited_map[*itb] = false;
}
CGAL_END_NAMESPACE
#endif