cgal/Spatial_searching/include/CGAL/Fuzzy_sphere.h

127 lines
3.9 KiB
C++

// Copyright (c) 2002 Utrecht University (The Netherlands).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Hans Tangelder (<hanst@cs.uu.nl>)
#ifndef CGAL_FUZZY_SPHERE_H
#define CGAL_FUZZY_SPHERE_H
#include <CGAL/Kd_tree_rectangle.h>
namespace CGAL {
template <class SearchTraits>
class Fuzzy_sphere{
public:
typedef typename SearchTraits::FT FT;
typedef typename SearchTraits::Point_d Point_d;
private:
Point_d c;
FT r;
FT eps;
public:
// default constructor
Fuzzy_sphere() {}
// constructor
Fuzzy_sphere(const Point_d& center, FT radius, FT epsilon=FT(0)) :
c(center), r(radius), eps(epsilon)
{ // avoid problems if eps > r
if (eps>r) eps=r;
}
bool contains(const Point_d& p) const {
// test whether the squared distance
// between P and c
// is at most the squared_radius
FT squared_radius = r*r;
FT distance=FT(0);
typename SearchTraits::Construct_cartesian_const_iterator_d construct_it;
typename SearchTraits::Cartesian_const_iterator_d cit = construct_it(c),
pit = construct_it(p),
end = construct_it(c, 0);
for (; cit != end
&& (distance <= squared_radius); ++cit, ++pit) {
distance +=
((*cit)-(*pit))*((*cit)-(*pit));
}
return (distance < squared_radius);
}
bool inner_range_intersects(const Kd_tree_rectangle<SearchTraits>& rectangle) const {
// test whether the interior of a sphere
// with radius (r-eps) intersects r, i.e.
// if the minimal distance of r to c is less than r-eps
FT distance = FT(0);
FT squared_radius = (r-eps)*(r-eps);
typename SearchTraits::Construct_cartesian_const_iterator_d construct_it;
typename SearchTraits::Cartesian_const_iterator_d cit = construct_it(c),
end = construct_it(c, 0);
for (int i = 0; cit != end && (distance < squared_radius); ++cit, ++i) {
if ((*cit) < rectangle.min_coord(i))
distance +=
(rectangle.min_coord(i)-(*cit))*(rectangle.min_coord(i)-(*cit));
if ((*cit) > rectangle.max_coord(i))
distance +=
((*cit)-rectangle.max_coord(i))*((*cit)-rectangle.max_coord(i));
}
return (distance < squared_radius);
}
bool outer_range_contains(const Kd_tree_rectangle<SearchTraits>& rectangle) const {
// test whether the interior of a sphere
// with radius (r+eps) is contained by r, i.e.
// if the minimal distance of the boundary of r
// to c is less than r+eps
FT distance=FT(0);
FT squared_radius = (r+eps)*(r+eps);
typename SearchTraits::Construct_cartesian_const_iterator_d construct_it;
typename SearchTraits::Cartesian_const_iterator_d cit = construct_it(c),
end = construct_it(c, 0);
for (int i = 0; cit != end && (distance < squared_radius) ; ++cit,++i) {
if ((*cit) <= (rectangle.min_coord(i)+rectangle.max_coord(i))/FT(2))
distance +=
(rectangle.max_coord(i)-(*cit))*(rectangle.max_coord(i)-(*cit));
else
distance += ((*cit)-rectangle.min_coord(i))*((*cit)-rectangle.min_coord(i));
}
return (distance < squared_radius);
}
~Fuzzy_sphere() {}
}; // class Fuzzy_sphere
} // namespace CGAL
#endif // FUZZY_SPHERE_H