cgal/Tutorial/tutorial/Polyhedron/sgp2004/paper/subdivision.tex

81 lines
3.0 KiB
TeX

% subdivision.tex
% ------------------------------------------------------------------------
\begin{figure}[tb]
\centering
\psfrag{A}[]{(a)}
\psfrag{B}[]{(b)}
\psfrag{C}[]{(c)}
\psfrag{D}[]{(d)}
\epsfig{file=figs/RefMap.eps, width=7cm}
\caption{The stencil ({\itshape top blue}) and its
vertex ({\itshape bottom red}) in
Catmull-Clark subdivision (a-c)
and Doo-Sabin subdivision (d). Catmull-Clark
subdivision has three stencils: facet-stencil (a),
edge-stencil (b) and vertex-stencil (c).
Doo-Sabin subdivision has only corner-stencil (d).
The stencil weights are not shown.}
\label{fig:RefMap}\vspace*{-4mm}
\end{figure}
%Subdivision surfaces \cite{cc,ds,loop,sqrt3,qts}
%are the limit surface resulting from the
%application of a subdivision algorithm to a control mesh.
%Subdivision algorithms recursively \emph{refine} (subdivide) the
%control mesh and \emph{modify} (smooth) the geometry according
%to a stencil on the source mesh.
%Further details on subdivisions can be found at \cite{Sub:course:2000}
%and \cite{Warren:subdivision}. The OpenMesh library has
%supports of Loop and $\sqrt{3}$ subdivisions \cite{Abhijit:2004:APISUB}.
Subdivision algorithms \cite{Warren:subdivision, Sub:course:2000}
contain two major steps: \emph{\tr} and \emph{\gm}.
The \tr\ reparameterizes the control mesh into a refined
mesh. The \gm\ transforms a submesh on the control mesh
to a vertex on the refined mesh. The submesh (with
the normalized weights) is called the
\emph{stencil}. A subdivision algorithm recursively
applies these two steps and approximates the limit surface.
%A proper combination of a \tr\ and a set of
%rules of \gm\ define a valid subdivision scheme.
The topological refinement is illustrated
in Fig.~\ref{fig:RefSchemes} for Catmull-Clark
subdivision (PQQ) \cite{cc}, Loop subdivision (PTQ) \cite{loop},
Doo-Sabin subdivision (DQQ) \cite{ds}, and $\sqrt{3}$ subdivision
\cite{sqrt3}. Subdivisions, such as Quad-Triangle subdivision
\cite{qts,l-pg-03}, may employ a hybrid refinement consisting
of two different refinements.
The \gm\ is illustrated with examples of the correspondence between
stencil and its vertex in Fig.~\ref{fig:RefMap}, where Catmull-Clark
subdivision has three distinct stencils and Doo-Sabin subdivision has
only one stencil.
\begin{figure}
\centering{\includegraphics[width=7.0cm]{figs/sqrt3}}
\caption{$\sqrt{3}$-Subdivision of the mannequin mesh.}
\label{fig:sqrt3}\vspace*{-3mm}
\end{figure}
%\subsubsection{Sqrt 3}
% connectivity ops: specific polyhedron algorithms (sqrt3 subdivisions)
\newcommand{\mySqrt}{$\sqrt{3}$}
\subsubsection*{Sqrt-3 Subdivision using Euler Operators}
\input sqrt3
% templated rules: a generic framework for subdivisions
\subsubsection*{Generic Subdivision Solution}
%\label{sec:subtempl}
\input subtempl
% inc builder: specific polyhedron algorithms (qt subdivisions)
%\subsection{Quad-triangle Subdivision using modifier}
%\input qt