cgal/Curved_kernel/doc_tex/Curved_kernel_ref/FunctorsOtherPredicates.tex

152 lines
3.8 KiB
TeX

\begin{ccRefFunctionObjectConcept}{CircularKernel::HasOn_2}
\ccDefinition
To test whether a point lies on a curve.
\ccCreationVariable{fo}
An object \ccVar\ of this type must provide:
\ccMemberFunction{bool operator()
(const CircularKernel::Line_2 & l,
const CircularKernel::Circular_arc_point_2 &p);}
{For a line.}
\ccMemberFunction{bool operator()
(const CircularKernel::Circle_2 & c,
const CircularKernel::Circular_arc_point_2 &p);}
{For a circle.}
\ccMemberFunction{bool operator()
(const CircularKernel::Line_arc_2 & l,
const CircularKernel::Circular_arc_point_2 &p);}
{For a line arc.}
\ccMemberFunction{bool operator()
(const CircularKernel::Circular_arc_2 & c,
const CircularKernel::Circular_arc_point_2 &p);}
{For a circular arc. \ccPrecond{$c$ is $x$-monotone.}}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::DoOverlap_2}
\ccDefinition
Testing whether the interiors of two curves overlap.
\ccCreationVariable{fo}
An object \ccVar\ of this type must provide:
\ccMemberFunction{bool operator()
(const CircularKernel::Line_arc_2 & l0,
const CircularKernel::Line_arc_2 & l1);}
{For two line arcs.}
\ccMemberFunction{bool operator()
(const CircularKernel::Circular_arc_2 & a0,
const CircularKernel::Circular_arc_2 & a1);}
{For two circular arcs. \ccPrecond{$a_0$ and $a_1$ are $x$-monotone.}}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::InXRange_2}
\ccDefinition
To test whether a point lies in the vertical range of a curve.
\ccCreationVariable{fo}
An object \ccVar\ of this type must provide:
\ccMemberFunction{bool operator()
(const CircularKernel::Line_arc_2 & l,
const CircularKernel::Circular_arc_point_2 & p);}
{For a line arc.}
\ccMemberFunction{bool operator()
(const CircularKernel::Circular_arc_2 & c,
const CircularKernel::Circular_arc_point_2 & p);}
{For a circular arc. \ccPrecond{$c$ is $x$-monotone.}}
\end{ccRefFunctionObjectConcept}
%\begin{ccRefFunctionObjectConcept}{CircularKernel::InYRange_2}
%\ccDefinition
%To test whether a point lies in the horizontal range of a curve.
%\ccCreationVariable{fo}
%An object \ccVar\ of this type must provide:
%\ccMemberFunction{bool operator()
% (const CircularKernel::Line_arc_2 & l,
% const CircularKernel::Circular_arc_point_2 & p);}
%{For a line arc.}
%\ccMemberFunction{bool operator()
% (const CircularKernel::Circular_arc_2 & c,
% const CircularKernel::Circular_arc_point_2 & p);}
%{For a circular arc. \ccPrecond{$c$ is $y$-monotone.}}
%\ccHasModels
%\ccc{Circular_kernel_2::In_y_range_2;}
%\ccSeeAlso
%\ccRefIdfierPage{CGAL::in_y_range}
%\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::IsVertical_2}
\ccCreationVariable{fo}
\ccRefines
\ccc{Kernel::IsVertical_2}
An object \ccVar\ of this type must provide:
\ccMemberFunction{bool operator()
(const CircularKernel::Line_arc_2 & l);}
{For a line arc.}
\ccMemberFunction{bool operator()
(const CircularKernel::Circular_arc_2 & c);}
{For a circular arc, always returns \ccc{false}.}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::IsXMonotone_2}
\ccCreationVariable{fo}
An object \ccVar\ of this type must provide:
\ccMemberFunction{bool operator()
(const CircularKernel::Circular_arc_2 & c);}
{Tests whether the arc is $x$-monotone.}
\ccMemberFunction{bool operator()
(const CircularKernel::Line_arc_2 & l);}
{For a line arc, always returns \ccc{true}.}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::IsYMonotone_2}
\ccCreationVariable{fo}
An object \ccVar\ of this type must provide:
\ccMemberFunction{bool operator()
(const CircularKernel::Circular_arc_2 & c);}
{Tests whether the arc is $y$-monotone.}
\ccMemberFunction{bool operator()
(const CircularKernel::Line_arc_2 & l);}
{For a line arc, always returns \ccc{true}.}
\end{ccRefFunctionObjectConcept}