cgal/Kernel_23/doc_tex/Kernel_23_ref/squared_radius.tex

53 lines
1.8 KiB
TeX

\begin{ccRefFunction}{squared_radius}
\ccFunction{FT
squared_radius( const Point_2<Kernel>& p,
const Point_2<Kernel>& q,
const Point_2<Kernel>& r);}
{compute the squared radius of the circle passing through the points
$p$, $q$, and $r$. \ccPrecond $p$, $q$, and $r$ are not collinear.}
\ccFunction{FT
squared_radius( const Point_2<Kernel>& p,
const Point_2<Kernel>& q);}
{compute the squared radius of the smallest circle passing through $p$,
and $q$, i.e. one fourth of the squared distance between $p$ and $q$.}
\ccFunction{FT
squared_radius( const Point_2<Kernel>& p);}
{compute the squared radius of the smallest circle passing through $p$,
i.e. $0$.}
\ccFunction{FT
squared_radius( const Point_3<Kernel>& p,
const Point_3<Kernel>& q,
const Point_3<Kernel>& r,
const Point_3<Kernel>& s);}
{compute the squared radius of the sphere passing through the points $p$,
$q$, $r$ and $s$. \ccPrecond $p$, $q$, $r$ and $s$ are not coplanar.}
\ccFunction{FT
squared_radius( const Point_3<Kernel>& p,
const Point_3<Kernel>& q,
const Point_3<Kernel>& r);}
{compute the squared radius of the sphere passing through the points $p$,
$q$, and $r$ and whose center is in the same plane as those three points.}
\ccFunction{FT
squared_radius( const Point_3<Kernel>& p,
const Point_3<Kernel>& q);}
{compute the squared radius of the smallest circle passing through $p$,
and $q$, i.e. one fourth of the squared distance between $p$ and $q$.}
\ccFunction{FT
squared_radius( const Point_3<Kernel>& p);}
{compute the squared radius of the smallest circle passing through $p$,
i.e. $0$.}
\ccSeeAlso
\ccRefIdfierPage{CGAL::Circle_2<Kernel>} \\
\ccRefIdfierPage{CGAL::Circle_3<Kernel>} \\
\ccRefIdfierPage{CGAL::Sphere_3<Kernel>} \\
\end{ccRefFunction}