cgal/Kernel_d/include/CGAL/Kernel_d/Cartesian_converter_d.h

264 lines
8.2 KiB
C++

// Copyright (c) 2001-2004 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Sylvain Pion <Sylvain.Pion@sophia.inria.fr>
// Menelaos Karavelas <mkaravel@cse.nd.edu>
// Samuel Hornus <Samuel.Hornus@sophia.inria.fr>
#ifndef CGAL_CARTESIAN_CONVERTER_D_H
#define CGAL_CARTESIAN_CONVERTER_D_H
// This file contains the definition of a dD kernel converter, based on Cartesian
// representation. It should work between *Cartesian_d<A> and *Cartesian_d<B>,
// provided you give a NT converter from A to B.
// TODO: There's NO Homogeneous counterpart at the moment.
// TODO: Maybe we can derive Cartesian_converter_d from Cartesian_converter ?
// But I don't know if it is interesting or not.
#include <CGAL/basic.h>
#include <CGAL/NT_converter.h>
#include <CGAL/Enum_converter.h>
#include <CGAL/Iterator_transform.h>
#include <vector>
#include <CGAL/Referenced_argument.h>
namespace CGAL {
// Guess which compiler needs this work around ?
namespace internal {
template < typename K1, typename K2 >
struct Default_converter_d {
typedef typename K1::FT FT1;
typedef typename K2::FT FT2;
typedef ::CGAL::NT_converter<FT1, FT2> Type;
};
} // namespace internal
template < class K1, class K2,
//class Converter = NT_converter<typename K1::FT, typename K2::FT> >
class Converter = typename internal::Default_converter_d<K1, K2>::Type >
class Cartesian_converter_d : public Enum_converter
{
typedef Enum_converter Base;
typedef Cartesian_converter_d<K1, K2, Converter> Self;
public:
typedef K1 Source_kernel;
typedef K2 Target_kernel;
typedef Converter Number_type_converter;
#ifdef CGAL_CFG_USING_BASE_MEMBER_BUG
bool operator()(bool b) const { return Base::operator()(b); }
Sign operator()(Sign s) const { return Base::operator()(s); }
Oriented_side operator()(Oriented_side os) const {
return Base::operator()(os);
}
Bounded_side operator()(Bounded_side bs) const {
return Base::operator()(bs);
}
Comparison_result operator()(Comparison_result cr) const {
return Base::operator()(cr);
}
Angle operator()(Angle a) const { return Base::operator()(a); }
#else
using Base::operator();
#endif
Cartesian_converter_d() // To shut up a warning with SunPRO.
: c(), k(), result_point_(20) {}
Origin
operator()(const Origin& o) const
{
return o;
}
Null_vector
operator()(const Null_vector& n) const
{
return n;
}
typename K2::FT
operator()(const typename K1::FT &a) const
{
return c(a);
}
template <typename T>
typename K2::FT
operator()(const T&,
typename std::enable_if<std::is_fundamental<T>::value>::type* = nullptr) const
{
// Disable fundamental types (other than K1::FT) to avoid unexpected results
// More details: https://github.com/CGAL/cgal/issues/4982
CGAL_static_assertion(!(std::is_fundamental<T>::value));
return typename K2::FT();
}
std::vector<Object>
operator()(const std::vector<Object>& v) const
{
std::vector<Object> res;
res.reserve(v.size());
for(unsigned int i = 0; i < v.size(); i++) {
res.push_back(operator()(v[i]));
}
return res;
}
int operator()(const int &a)
{
return a;
}
typename K2::Point_d
operator()(const typename K1::Point_d &a) const
{
typedef typename K2::Point_d Point_d;
typedef typename K1::Point_d::Cartesian_const_iterator Coord_iter;
typedef Iterator_transform<Coord_iter, Converter> It;
return Point_d(a.dimension(), It(a.cartesian_begin()), It(a.cartesian_end()));
}
typename K2::Vector_d
operator()(const typename K1::Vector_d &a) const
{
typedef typename K2::Vector_d Vector_d;
typedef typename K1::Point_d::Cartesian_const_iterator Coord_iter;
typedef Iterator_transform<Coord_iter, Converter> It;
return Vector_d(a.dimension(), It(a.cartesian_begin()), It(a.cartesian_end()));
}
typename K2::Direction_d
operator()(const typename K1::Direction_d &a) const
{
typedef typename K2::Direction_d Direction_d;
return Direction_d(operator()(a.vector()));
}
typename K2::Segment_d
operator()(const typename K1::Segment_d &a) const
{
typedef typename K2::Segment_d Segment_d;
return Segment_d(operator()(a.source()), operator()(a.target()));
}
typename K2::Line_d
operator()(const typename K1::Line_d &a) const
{
typedef typename K2::Line_d Line_d;
return Line_d(operator()(a.point(0)), operator()(a.direction()));
}
typename K2::Ray_d
operator()(const typename K1::Ray_d &a) const
{
typedef typename K2::Ray_d Ray_d;
return Ray_d(operator()(a.source()), operator()(a.second_point()));
}
typename K2::Sphere_d
operator()(const typename K1::Sphere_d &a) const
{
typedef typename K2::Sphere_d Sphere_d;
typedef typename K1::Sphere_d::point_iterator Coord_iter;
// TODO: Check that the use of Iterator_transform is correct
typedef Iterator_transform<Coord_iter, Converter> It;
return Sphere_d(a.dimension(), It(a.points_begin()), It(a.points_end()));
}
typename K2::Hyperplane_d
operator()(const typename K1::Hyperplane_d &a) const
{
typedef typename K2::Hyperplane_d Hyperplane_d;
typedef typename K1::Hyperplane_d::Coefficient_const_iterator Coord_iter;
// TODO: Check that the use of Iterator_transform is correct
typedef Iterator_transform<Coord_iter, Converter> It;
return Hyperplane_d(a.dimension(), It(a.coefficients_begin()), It(a.coefficients_end()));
}
typename K2::Iso_box_d
operator()(const typename K1::Iso_box_d &a) const
{
typedef typename K2::Iso_box_d Iso_box_d;
return Iso_box_d(operator()((a.min)()), operator()((a.max)()));
}
/*std::vector<int> &
operator()(const std::vector<int> & a) const
{
return const_cast<std::vector<int> &>(a);
}*/
std::vector<int>::iterator
operator()(const std::vector<int>::iterator & a) const
{
return a;
}
template<typename T>
Referenced_argument<T> & operator()(const Referenced_argument<T> & a) const
{
return const_cast<Referenced_argument<T> &> (a);
}
// ---- The following allows to convert iterators to Point_d, Vector_d,
// etc... by adapting the iterator with an 'on-the-fly' converter. This is
// not the most efficient because, if the iterator is dereferenced N times,
// its value will be converted N times... TODO: Convert once and for all:
// this should probably be done in Filtered_kernel.h (or a new
// Filtered_kernel_d.h file).
template<typename IterBase>
struct Specialized_converter : public Self
{
typedef typename IterBase::value_type argument_type;
typedef typename argument_type::
template WithAnotherKernel<K2>::Type result_type;
};
template<typename IterBase>
Iterator_transform<IterBase, Specialized_converter<IterBase> >
operator()(const IterBase & a) const
{
return Iterator_transform<IterBase, Specialized_converter<IterBase> >(a);
}
// ---- ---- ---- ---- ---- ---- //
private:
Converter c;
K2 k;
typename K2::Point_d result_point_;
};
// Specialization when converting to the same kernel,
// to avoid making copies.
template < class K, class C >
class Cartesian_converter_d <K, K, C>
{
public:
typedef K Source_kernel;
typedef K Target_kernel;
typedef C Number_type_converter;
template < typename T >
const T& operator()(const T&t) const { return t; }
};
} //namespace CGAL
#endif // CGAL_CARTESIAN_CONVERTER_D_H