cgal/Octree/include/CGAL/Octree.h

275 lines
9.5 KiB
C++

// Copyright (c) 2007-2008 INRIA (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
//
// Author(s) : Tong Zhao, Cédric Portaneri
#ifndef CGAL_OCTREE_3_H
#define CGAL_OCTREE_3_H
#include <CGAL/Octree/Octree_node.h>
#include <CGAL/Octree/Split_criterion.h>
#include <CGAL/bounding_box.h>
#include <boost/iterator/transform_iterator.hpp>
#include <CGAL/Aff_transformation_3.h>
#include <CGAL/aff_transformation_tags.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <CGAL/Search_traits_3.h>
#include <CGAL/Search_traits_adapter.h>
/*
* These headers were not included here originally
* Adding them was necessary to make this header self sufficient
*/
#include <boost/function.hpp>
#include <boost/bind.hpp>
#include <iostream>
#include <fstream>
#include <ostream>
#include <stack>
#include <queue>
#include <vector>
#include <math.h>
namespace CGAL {
template<class Kernel,
class PointRange,
class PointMap>
class Octree {
public: // types :
typedef Octree_node<Kernel, PointRange> Node;
typedef typename Kernel::FT FT;
typedef typename Kernel::Point_3 Point;
typedef typename Kernel::Vector_3 Vector;
typedef typename Kernel::Iso_cuboid_3 Iso_cuboid;
// New Types :
typedef typename PointRange::iterator Range_iterator;
typedef typename std::iterator_traits<Range_iterator>::value_type Range_type;
// TODO: Kernel can be deduced from the point map
private: // data members :
Node m_root; /* root node of the octree */
uint8_t m_max_depth_reached = 0; /* octree actual highest depth reached */
PointRange &m_ranges; /* input point range */
PointMap m_points_map; /* property map: `value_type of InputIterator` -> `Point` (Position) */
Point m_bbox_min; /* input bounding box min value */
FT m_bbox_side; /* input bounding box side length (cube) */
std::vector<FT> m_side_per_depth; /* side length per node's depth */
std::vector<size_t> m_unit_per_depth; /* number of unit node (smallest) inside one node for each depth for one axis */
public: // functions :
Octree(
PointRange &pwn,
PointMap &point_map,
const FT enlarge_ratio = 1.2) :
m_ranges(pwn),
m_points_map(point_map) {
// compute bounding box that encloses all points
Iso_cuboid bbox = CGAL::bounding_box(boost::make_transform_iterator
(m_ranges.begin(),
CGAL::Property_map_to_unary_function<PointMap>(
m_points_map)),
boost::make_transform_iterator
(m_ranges.end(),
CGAL::Property_map_to_unary_function<PointMap>(
m_points_map)));
// Find the center point of the box
Point bbox_centroid = midpoint(bbox.min(), bbox.max());
// scale bounding box to add padding
bbox = bbox.transform(Aff_transformation_3<Kernel>(SCALING, enlarge_ratio));
// Convert the bounding box into a cube
FT x_len = bbox.xmax() - bbox.xmin();
FT y_len = bbox.ymax() - bbox.ymin();
FT z_len = bbox.zmax() - bbox.zmin();
FT max_len = (x_len < y_len) ? y_len : x_len;
max_len = (max_len < z_len) ? z_len : max_len;
bbox = Iso_cuboid(bbox.min(), bbox.min() + max_len * Vector(1.0, 1.0, 1.0));
// Shift the squared box to make sure it's centered in the original place
Point bbox_transformed_centroid = midpoint(bbox.min(), bbox.max());
Vector diff_centroid = bbox_centroid - bbox_transformed_centroid;
bbox = bbox.transform(Aff_transformation_3<Kernel>(TRANSLATION, diff_centroid));
// save octree attributes
m_bbox_min = bbox.min();
m_bbox_side = bbox.max()[0] - m_bbox_min[0];
m_root.begin() = pwn.begin();
m_root.end() = pwn.end();
}
~Octree() {
m_root.unsplit();
}
void refine(std::function<bool(const Node &)> split_criterion) {
// create a side length map
for (int i = 0; i <= (int) 10; i++)
m_side_per_depth.push_back(m_bbox_side / (FT) (1 << i));
// Initialize a queue of nodes that need to be refined
std::queue<Node*> todo;
todo.push(&m_root);
// Process items in the queue until it's consumed fully
while (!todo.empty()) {
// Get the next element
auto current = todo.front();
todo.pop();
int depth = current->depth();
// Check if this node needs to be processed
if (split_criterion(*current)) {
// Split this node
current->split();
// Redistribute its points
reassign_points((*current));
// Process each of its children
for (int i = 0; i < 8; ++i)
todo.push(&(*current)[i]);
}
}
}
void refine(size_t max_depth, size_t bucket_size) {
refine(Split_to_max_depth_or_bucket_size(max_depth, bucket_size));
}
Node &root() { return m_root; }
const Node &root() const { return m_root; }
bool operator==(Octree<Kernel, PointRange, PointMap> &rhs) {
// Identical trees should have the same bounding box
if (rhs.m_bbox_min != m_bbox_min || rhs.m_bbox_side != m_bbox_side)
return false;
// Identical trees should have the same depth
if (rhs.m_max_depth_reached != m_max_depth_reached)
return false;
// If all else is equal, recursively compare the trees themselves
return rhs.m_root == m_root;
}
private: // functions :
Point compute_barycenter_position(Node &node) const {
// Determine the side length of this node
FT size = m_side_per_depth[node.depth()];
// Determine the location this node should be split
FT bary[3];
for (int i = 0; i < 3; i++)
bary[i] = node.location()[i] * size + (size / 2.0) + m_bbox_min[i];
// Convert that location into a point
return {bary[0], bary[1], bary[2]};
}
std::array<Range_iterator, 9> partition_around_point(Range_iterator begin, Range_iterator end, Point point) {
auto partitions = std::array<Range_iterator, 9>();
partitions[0] = begin;
partitions[8] = end;
// Split on x
partitions[4] = std::partition(partitions[0], partitions[8],
[&](const Range_type &a) -> bool {
return (get(m_points_map, a)[0] < point[0]);
});
// Split on y, to the left of x
partitions[2] = std::partition(partitions[0], partitions[4],
[&](const Range_type &a) -> bool {
return (get(m_points_map, a)[1] < point[1]);
});
// Split on y, to the right of x
partitions[6] = std::partition(partitions[4], partitions[8],
[&](const Range_type &a) -> bool {
return (get(m_points_map, a)[1] < point[1]);
});
// Split on z, to the left of y and the left of x
partitions[1] = std::partition(partitions[0], partitions[2],
[&](const Range_type &a) -> bool {
return (get(m_points_map, a)[2] < point[2]);
});
// Split on z, to the right of y and the left of x
partitions[3] = std::partition(partitions[2], partitions[4],
[&](const Range_type &a) -> bool {
return (get(m_points_map, a)[2] < point[2]);
});
// Split on z, to the left of y and the right of x
partitions[5] = std::partition(partitions[4], partitions[6],
[&](const Range_type &a) -> bool {
return (get(m_points_map, a)[2] < point[2]);
});
// Split on z, to the right of y and the right of x
partitions[7] = std::partition(partitions[6], partitions[8],
[&](const Range_type &a) -> bool {
return (get(m_points_map, a)[2] < point[2]);
});
return partitions;
}
void reassign_points(Node &node) {
Point center = compute_barycenter_position(node);
auto partitions = partition_around_point(node.begin(), node.end(), center);
for (int i = 0; i < 8; ++i) {
node[i].begin() = partitions[i];
node[i].end() = partitions[i + 1];
}
}
}; // end class Octree
} // namespace CGAL
#endif // CGAL_OCTREE_3_H