cgal/Curved_kernel/doc_tex/Curved_kernel_ref/AlgFunctorsConstruct.tex

130 lines
3.7 KiB
TeX

\begin{ccRefConcept}{AlgebraicKernelForCircles::ConstructPolynomial_1_2}
\ccDefinition
\ccCreationVariable{fo}
A model \ccVar\ of this type must provide:
\ccMethod{AlgebraicKernelForCircles::Polynomial_1_2
operator()(const AlgebraicKernelForCircles::RT a,
const AlgebraicKernelForCircles::RT b,
const AlgebraicKernelForCircles::RT c);}
{Constructs polynomial \ccc{ax+by+c}.}
\end{ccRefConcept}
\begin{ccRefConcept}{AlgebraicKernelForCircles::ConstructPolynomialForCircles_2_2}
\ccCreationVariable{fo}
A model \ccVar\ of this type must provide:
\ccMethod{AlgebraicKernelForCircles::PolynomialForCircles_2_2
operator()(const AlgebraicKernelForCircles::FT a,
const AlgebraicKernelForCircles::FT b,
const AlgebraicKernelForCircles::FT rsq);}
{Constructs polynomial \ccc{(x-a)^2 + (y-b)^2 - rsq}.}
\end{ccRefConcept}
\begin{ccRefConcept}{AlgebraicKernelForCircles::Solve}
\ccDefinition
\ccCreationVariable{fo}
A model \ccVar\ of this type must provide:
\ccMethod{template < class OutputIterator >
OutputIterator
operator()(const AlgebraicKernelForCircles::Polynomial_1_2 &p1,
const AlgebraicKernelForCircles::Polynomial_1_2 &p2,
OutputIterator res);}
{Copies in the output iterator the common roots of \ccc{p1} and \ccc{p2}, with their multiplicity, as objects of type \ccc{std::pair< AlgebraicKernelForCircles::RootForCircles_2_2, int>}.} \footnote{???}
\ccMethod{template < class OutputIterator >
OutputIterator
operator()(const AlgebraicKernelForCircles::Polynomial1_2 &p1,
const AlgebraicKernelForCircles::PolynomialForCircles_2_2 &p2,
OutputIterator res);}
{Same as previous.}
\ccMethod{template < class OutputIterator >
OutputIterator
operator()(const AlgebraicKernelForCircles::PolynomialForCircles_2_2 &p1,
const AlgebraicKernelForCircles::PolynomialForCircles_2_2 &p2,
OutputIterator res);}
{Same as previous.}
\ccHasModels
\ccc{Algebraic_kernel_for_circles_2_2::Solve;}
\ccSeeAlso
\ccRefIdfierPage{CGAL::solve}
\end{ccRefConcept}
\begin{ccRefConcept}{AlgebraicKernelForCircles::XCriticalPoints}
\ccDefinition
\ccCreationVariable{fo}
A model \ccVar\ of this type must provide:
\ccMethod{template < class OutputIterator >
OutputIterator
operator()(const AlgebraicKernelForCircles::PolynomialForCircles_2_2 &p,
OutputIterator res);}
{Copies in the output iterator the \ccc{x}-critical points of polynomial
\ccc{p}, as objects of type \ccc{AlgebraicKernelForCircles::RootForCircles_2_2}.}
\ccMethod{template < class OutputIterator >
AlgebraicKernelForCircles::RootForCircles_2_2
operator()(const AlgebraicKernelForCircles::PolynomialForCircles_2_2 &p,
bool i);}
{Computes the \ccc{i}th \ccc{x}-critical point of polynomial \ccc{p}.}
\ccHasModels
\ccc{Algebraic_kernel_for_circles_2_2::X_critical_points;}
\ccSeeAlso
\ccRefIdfierPage{CGAL::x_critical_points}
\end{ccRefConcept}
\begin{ccRefConcept}{AlgebraicKernelForCircles::YCriticalPoints}
\ccDefinition
\ccCreationVariable{fo}
A model \ccVar\ of this type must provide:
\ccMethod{template < class OutputIterator >
OutputIterator
operator()(const AlgebraicKernelForCircles::PolynomialForCircles_2_2 &p,
OutputIterator res);}
{Copies in the output iterator the \ccc{y}-critical points of polynomial
\ccc{p}, as objects of type \ccc{AlgebraicKernelForCircles::RootForCircles_2_2}.}
\ccMethod{template < class OutputIterator >
AlgebraicKernelForCircles::RootForCircles_2_2
operator()(const AlgebraicKernelForCircles::PolynomialForCircles_2_2 &p,
bool i);}
{Computes the \ccc{i}th \ccc{y}-critical point of polynomial \ccc{p}.}
\ccHasModels
\ccc{Algebraic_kernel_for_circles_2_2::Y_critical_points;}
\ccSeeAlso
\ccRefIdfierPage{CGAL::y_critical_points}
\end{ccRefConcept}