cgal/Curved_kernel/doc_tex/Curved_kernel_ref/FunctorsOtherPredicates.tex

197 lines
4.2 KiB
TeX

\begin{ccRefFunctionObjectConcept}{CircularKernel::HasOn_2}
\ccDefinition
To test whether a curve contains a point.
\ccCreationVariable{fo}
An object \ccVar\ of this type must provide:
\ccMemberFunction{bool operator()
(const CircularKernel::Line_2 & l,
const CircularKernel::Circular_arc_point_2 &p);}
{For a line.}
\ccMemberFunction{bool operator()
(const CircularKernel::Circle_2 & c,
const CircularKernel::Circular_arc_point_2 &p);}
{For a circle.}
\ccMemberFunction{bool operator()
(const CircularKernel::Line_arc_2 & l,
const CircularKernel::Circular_arc_point_2 &p);}
{For a line arc.}
\ccMemberFunction{bool operator()
(const CircularKernel::Circular_arc_2 & l,
const CircularKernel::Circular_arc_point_2 &p);}
{For a circular arc.}
\ccHasModels
\ccc{Circular_kernel_2::Has_on _2;}
\ccSeeAlso
\ccRefIdfierPage{CGAL::has_on}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::DoOverlap_2}
\ccDefinition
Testing whether the interiors of two curves overlap.
\ccCreationVariable{fo}
An object \ccVar\ of this type must provide:
\ccMemberFunction{bool operator()
(const CircularKernel::Line_arc_2 & l0,
const CircularKernel::Line_arc_2 & l1);}
{For two line arcs.}
\ccMemberFunction{bool operator()
(const CircularKernel::Circular_arc_2 & a0,
const CircularKernel::Circular_arc_2 & a1);}
{For two circular arcs.}
\ccHasModels
\ccc{Circular_kernel_2::Do_overlap_2;}
\ccSeeAlso
\ccRefIdfierPage{CGAL::do_overlap}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::InXRange_2}
\ccDefinition
To test whether a point lies in the vertical range of a curve.
\ccCreationVariable{fo}
An object \ccVar\ of this type must provide:
\ccMemberFunction{bool operator()
(const CircularKernel::Line_arc_2 & l,
const CircularKernel::Circular_arc_point_2 & p);}
{For a line arc.}
\ccMemberFunction{bool operator()
(const CircularKernel::Circular_arc_2 & c,
const CircularKernel::Circular_arc_point_2 & p);}
{For a circular arc. \ccPrecond{$c$ is $x$-monotone.}}
\ccHasModels
\ccc{Circular_kernel_2::In_x_range_2;}
\ccSeeAlso
\ccRefIdfierPage{CGAL::in_x_range}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::InYRange_2}
\ccDefinition
To test whether a point lies in the horizontal range of a curve.
\ccCreationVariable{fo}
An object \ccVar\ of this type must provide:
\ccMemberFunction{bool operator()
(const CircularKernel::Line_arc_2 & l,
const CircularKernel::Circular_arc_point_2 & p);}
{For a line arc.}
\ccMemberFunction{bool operator()
(const CircularKernel::Circular_arc_2 & c,
const CircularKernel::Circular_arc_point_2 & p);}
{For a circular arc. \ccPrecond{$c$ is $y$-monotone.}}
\ccHasModels
\ccc{Circular_kernel_2::In_y_range_2;}
\ccSeeAlso
\ccRefIdfierPage{CGAL::in_y_range}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::IsVertical_2}
\ccCreationVariable{fo}
An object \ccVar\ of this type must provide:
\ccMemberFunction{bool operator()
(const CircularKernel::Line_arc_2 & l);}
{For a line arc.}
\ccMemberFunction{bool operator()
(const CircularKernel::Circular_arc_2 & c);}
{For a circular arc, always returns \ccc{false}.}
\ccHasModels
\ccc{Circular_kernel_2::Is_vertical_2;}
\ccSeeAlso
\ccRefIdfierPage{CGAL::is_vertical}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::IsXMonotone_2}
\ccCreationVariable{fo}
An object \ccVar\ of this type must provide:
\ccMemberFunction{bool operator()
(const CircularKernel::Circular_arc_2 & c);}
{Tests whether the arc is $x$-monotone.}
\ccMemberFunction{bool operator()
(const CircularKernel::Line_arc_2 & l);}
{For a line arc, always returns \ccc{true}.}
\ccHasModels
\ccc{Circular_kernel_2::Is_x_monotone_2;}
\ccSeeAlso
\ccRefIdfierPage{CGAL::is_x_monotone}
\end{ccRefFunctionObjectConcept}
\begin{ccRefFunctionObjectConcept}{CircularKernel::IsYMonotone_2}
\ccCreationVariable{fo}
An object \ccVar\ of this type must provide:
\ccMemberFunction{bool operator()
(const CircularKernel::Circular_arc_2 & c);}
{Tests whether the arc is $y$-monotone.}
\ccHasModels
\ccc{Circular_kernel_2::Is_y_monotone_2;}
\ccSeeAlso
\ccRefIdfierPage{CGAL::is_y_monotone}
\end{ccRefFunctionObjectConcept}