cgal/Kernel_23/include/CGAL/Sphere_3.h

330 lines
8.4 KiB
C++

// Copyright (c) 1999 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Stefan Schirra
#ifndef CGAL_SPHERE_3_H
#define CGAL_SPHERE_3_H
#include <boost/static_assert.hpp>
#include <boost/type_traits.hpp>
#include <CGAL/Kernel/Return_base_tag.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/representation_tags.h>
CGAL_BEGIN_NAMESPACE
template <class R_>
class Sphere_3 : public R_::Kernel_base::Sphere_3
{
typedef typename R_::FT FT;
typedef typename R_::Point_3 Point_3;
typedef typename R_::Aff_transformation_3 Aff_transformation_3;
typedef Sphere_3 Self;
BOOST_STATIC_ASSERT((boost::is_same<Self, typename R_::Sphere_3>::value));
public:
typedef typename R_::Kernel_base::Sphere_3 Rep;
const Rep& rep() const
{
return *this;
}
Rep& rep()
{
return *this;
}
typedef R_ R;
Sphere_3() {}
Sphere_3(const Rep& s)
: Rep(s) {}
Sphere_3(const Point_3& p, const FT& sq_rad,
const Orientation& o = COUNTERCLOCKWISE)
: Rep(typename R::Construct_sphere_3()(Return_base_tag(), p, sq_rad, o)) {}
Sphere_3(const Point_3& p, const Point_3& q,
const Point_3& r, const Point_3& u)
: Rep(typename R::Construct_sphere_3()(Return_base_tag(), p, q, r, u)) {}
Sphere_3(const Point_3& p, const Point_3& q, const Point_3& r,
const Orientation& o = COUNTERCLOCKWISE)
: Rep(typename R::Construct_sphere_3()(Return_base_tag(), p, q, r, o)) {}
Sphere_3(const Point_3& p, const Point_3& q,
const Orientation& o = COUNTERCLOCKWISE)
: Rep(typename R::Construct_sphere_3()(Return_base_tag(), p, q, o)) {}
Sphere_3(const Point_3& p, const Orientation& o = COUNTERCLOCKWISE)
: Rep(typename R::Construct_sphere_3()(Return_base_tag(), p, o)) {}
Sphere_3 orthogonal_transform(const Aff_transformation_3 &t) const;
// FIXME : why doesn't Qrt work here ? We loose optimization !
//typename Qualified_result_of<typename R::Construct_center_3, Sphere_3>::type
Point_3
center() const
{
return R().construct_center_3_object()(*this);
}
FT
squared_radius() const
{
return R().compute_squared_radius_3_object()(*this);
}
// Returns a circle with opposite orientation
Sphere_3 opposite() const
{
return R().construct_opposite_sphere_3_object()(*this);
}
Orientation orientation() const
{
return R().orientation_3_object()(*this);
}
Bounded_side
bounded_side(const Point_3 &p) const
{
return R().bounded_side_3_object()(*this, p);
}
Oriented_side
oriented_side(const Point_3 &p) const
{
return R().oriented_side_3_object()(*this, p);
}
bool
has_on_boundary(const Point_3 &p) const
{
return R().has_on_boundary_3_object()(*this, p);
//return bounded_side(p) == ON_BOUNDARY;
}
bool
has_on_bounded_side(const Point_3 &p) const
{
return bounded_side(p) == ON_BOUNDED_SIDE;
}
bool
has_on_unbounded_side(const Point_3 &p) const
{
return bounded_side(p) == ON_UNBOUNDED_SIDE;
}
bool
has_on_negative_side(const Point_3 &p) const
{
if (orientation() == COUNTERCLOCKWISE)
return has_on_unbounded_side(p);
return has_on_bounded_side(p);
}
bool
has_on_positive_side(const Point_3 &p) const
{
if (orientation() == COUNTERCLOCKWISE)
return has_on_bounded_side(p);
return has_on_unbounded_side(p);
}
bool
is_degenerate() const
{
return R().is_degenerate_3_object()(*this);
//return CGAL_NTS is_zero(squared_radius());
}
Bbox_3
bbox() const
{
return R().construct_bbox_3_object()(*this);
}
};
template <class R_>
Sphere_3<R_>
Sphere_3<R_>::
orthogonal_transform(const typename R_::Aff_transformation_3& t) const
{
typedef typename R_::RT RT;
typedef typename R_::FT FT;
typedef typename R_::Vector_3 Vector_3;
// FIXME: precond: t.is_orthogonal() (*UNDEFINED*)
Vector_3 vec(RT(1), RT(0), RT(0)); // unit vector
vec = vec.transform(t); // transformed
FT sq_scale = vec.squared_length(); // squared scaling factor
return Sphere_3(t.transform(this->center()),
sq_scale * this->squared_radius(),
t.is_even() ? this->orientation()
: CGAL::opposite(this->orientation()));
}
template <class R >
std::ostream&
insert(std::ostream& os, const Sphere_3<R>& c,const Cartesian_tag&)
{
switch(os.iword(IO::mode)) {
case IO::ASCII :
os << c.center() << ' ' << c.squared_radius() << ' '
<< static_cast<int>(c.orientation());
break;
case IO::BINARY :
os << c.center();
write(os, c.squared_radius());
write(os, static_cast<int>(c.orientation()));
break;
default:
os << "SphereC3(" << c.center() << ", " << c.squared_radius();
switch (c.orientation()) {
case CLOCKWISE:
os << ", clockwise)";
break;
case COUNTERCLOCKWISE:
os << ", counterclockwise)";
break;
default:
os << ", collinear)";
break;
}
break;
}
return os;
}
template <class R >
std::ostream&
insert(std::ostream& os, const Sphere_3<R>& c, const Homogeneous_tag&)
{
switch(os.iword(IO::mode)) {
case IO::ASCII :
os << c.center() << ' ' << c.squared_radius() << ' '
<< static_cast<int>(c.orientation());
break;
case IO::BINARY :
os << c.center();
write(os, c.squared_radius());
write(os, static_cast<int>(c.orientation()));
break;
default:
os << "SphereH3(" << c.center() << ", " << c.squared_radius();
switch (c.orientation()) {
case CLOCKWISE:
os << ", clockwise)";
break;
case COUNTERCLOCKWISE:
os << ", counterclockwise)";
break;
default:
os << ", collinear)";
break;
}
break;
}
return os;
}
template < class R >
std::ostream&
operator<<(std::ostream& os, const Sphere_3<R>& c)
{
return insert(os, c, typename R::Kernel_tag() );
}
template <class R >
std::istream&
extract(std::istream& is, Sphere_3<R>& c, const Cartesian_tag&)
{
typename R::Point_3 center;
typename R::FT squared_radius;
int o;
switch(is.iword(IO::mode)) {
case IO::ASCII :
is >> center >> squared_radius >> o;
break;
case IO::BINARY :
is >> center;
read(is, squared_radius);
is >> o;
break;
default:
std::cerr << "" << std::endl;
std::cerr << "Stream must be in ascii or binary mode" << std::endl;
break;
}
if (is)
c = Sphere_3<R>(center, squared_radius, static_cast<Orientation>(o));
return is;
}
template <class R >
std::istream&
extract(std::istream& is, Sphere_3<R>& c, const Homogeneous_tag&)
{
typename R::Point_3 center;
typename R::FT squared_radius;
int o;
switch(is.iword(IO::mode)) {
case IO::ASCII :
is >> center >> squared_radius >> o;
break;
case IO::BINARY :
is >> center;
read(is, squared_radius);
is >> o;
break;
default:
std::cerr << "" << std::endl;
std::cerr << "Stream must be in ascii or binary mode" << std::endl;
break;
}
if (is)
c = Sphere_3<R>(center, squared_radius, static_cast<Orientation>(o));
return is;
}
template < class R >
std::istream&
operator>>(std::istream& is, Sphere_3<R>& c)
{
return extract(is, c, typename R::Kernel_tag() );
}
CGAL_END_NAMESPACE
#endif // CGAL_SPHERE_3_H