cgal/Polynomial/test/Polynomial/modular_gcd_utils.cpp

152 lines
4.2 KiB
C++

// ============================================================================
//
// Copyright (c) 2001-2006 Max-Planck-Institut Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of EXACUS (http://www.mpi-inf.mpg.de/projects/EXACUS/).
//
// ----------------------------------------------------------------------------
//
// Library : CGAL
// File : test/modular_gcd_utils.C
// CGAL_release : $Name: $
// Revision : $Revision$
// Revision_date : $Date$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Dominik Huelse <dominik.huelse@gmx.de>
//
//
// ============================================================================
/*! \file CGAL/Polynomial/modular_gcd_utils.C
test for the function euclidean_division_obstinate
*/
#include <CGAL/gen_polynomials.h>
#include <CGAL/Polynomial/modular_gcd_utils.h>
#include <CGAL/Random.h>
#include <CGAL/Arithmetic_kernel.h>
#include <CGAL/CORE_arithmetic_kernel.h>
#include <CGAL/LEDA_arithmetic_kernel.h>
#include <CGAL/Sqrt_extension.h>
#include <CGAL/Polynomial.h>
#include <CGAL/use.h>
#include <cassert>
template<class AT>
void test_modular_gcd_utils() {
CGAL_SNAP_ARITHMETIC_KERNEL_TYPEDEFS(AT);
CGAL_USE_TYPE(Rational);
CGAL_USE_TYPE(Field_with_sqrt);
CGAL::Random my_random(4711);
::CGAL::IO::set_pretty_mode(std::cout);
typedef typename AT::Integer Integer;
typedef Integer NT;
{
// testing integers
Integer f, g, q, r;
// random integers
for(int l=0;l<100;l++){
f = CGAL::internal::rand_int<Integer>(my_random.get_int(10,1000));
g = CGAL::internal::rand_int<Integer>(my_random.get_int(10,1000));
CGAL::internal::euclidean_division_obstinate(f, g, q, r);
assert(f==g*q+r);
}
}
{
typedef CGAL::Polynomial<Integer> Poly;
typedef typename CGAL::Modular_traits<Poly>::Residue_type MPoly;
CGAL::Residue::set_current_prime(43);
Poly a, b;
MPoly mQ, mR;
a = Poly(0);
b = Poly(NT(122),NT(72));
MPoly ma = CGAL::modular_image(a);
MPoly mb = CGAL::modular_image(b);
CGAL::internal::euclidean_division_obstinate(ma, mb, mQ, mR);
assert(ma==mb*mQ+mR);
// random polynomials with integer coefficients
Poly f, g;
int l;
// random polynomials with integer coefficients
for(l=0;l<100;l++){
f = CGAL::internal::rand_Poly_int<Integer>(my_random.get_int(10,1000),
my_random.get_int(1,15));
g = CGAL::internal::rand_Poly_int<Integer>(my_random.get_int(10,1000),
my_random.get_int(1,10));
CGAL::Residue::set_current_prime(4483);
MPoly mf= CGAL::modular_image(f);
MPoly mg= CGAL::modular_image(g);
CGAL::internal::euclidean_division_obstinate(mf, mg, mQ, mR);
assert(mf ==mg*mQ+mR);
}
}
{
typedef CGAL::Sqrt_extension<Integer,Integer> EXT;
typedef CGAL::Polynomial<EXT> Poly_Ext;
typedef typename CGAL::Modular_traits<Poly_Ext>::Residue_type MPoly_Ext;
CGAL::Residue::set_current_prime(43);
Poly_Ext a, b;
MPoly_Ext mQ, mR;
a = Poly_Ext(0);
b = Poly_Ext(NT(122),NT(72),NT(17));
MPoly_Ext ma = CGAL::modular_image(a);
MPoly_Ext mb = CGAL::modular_image(b);
CGAL::internal::euclidean_division_obstinate(ma, mb, mQ, mR);
assert(ma == mb*mQ+mR);
// random polynomials with sqrt coefficients
Poly_Ext f, g;
int l;
MPoly_Ext mf, mg;
CGAL::Residue::set_current_prime(4253);
for(l=0;l<2;l++){
f = CGAL::internal::rand_Poly_sqrt<EXT,Integer>
(my_random.get_int(10,1000),my_random.get_int(1,15),NT(8293));
g = CGAL::internal::rand_Poly_sqrt<EXT,Integer>
(my_random.get_int(10,1000),my_random.get_int(1,10),NT(8293));
MPoly_Ext mf= CGAL::modular_image(f);
MPoly_Ext mg= CGAL::modular_image(g);
CGAL::internal::euclidean_division_obstinate(mf, mg, mQ, mR);
assert(mf == mg*mQ+mR);
}
}
}
int main(){
// Enforce IEEE double precision and to nearest before using modular arithmetic
CGAL::Protect_FPU_rounding<true> pfr(CGAL_FE_TONEAREST);
#ifdef CGAL_USE_LEDA
test_modular_gcd_utils<CGAL::LEDA_arithmetic_kernel>();
#endif // CGAL_USE_LEDA
#ifdef CGAL_USE_CORE
test_modular_gcd_utils<CGAL::CORE_arithmetic_kernel>();
#endif // Lis_HAVE_CORE
return 0;
}
// EOF