mirror of https://github.com/CGAL/cgal
34 lines
1.0 KiB
TeX
34 lines
1.0 KiB
TeX
\begin{ccRefConcept}{AlgebraicStructureTraits::IntegralDivision}
|
|
|
|
\ccDefinition
|
|
|
|
\ccc{AdaptableBinaryFunction} providing an integral divison.
|
|
|
|
Integral division (a.k.a. exact division or division without remainder) maps
|
|
ring elements $(x,y)$ to ring element $z$ such that $x = yz$ if such a $z$
|
|
exists (i.e. if $x$ is divisible by $y$). Otherwise the effect of invoking
|
|
this operation is undefined. Since the ring represented is an integral domain,
|
|
$z$ is uniquely defined if it exists.
|
|
|
|
\ccRefines
|
|
|
|
\ccc{AdaptableUnaryFunction}
|
|
|
|
\ccTypes
|
|
\ccTypedef{typedef AlgebraicStructureTraits::AS result_type;}{}
|
|
\ccTypedef{typedef AlgebraicStructureTraits::AS first_argument_type;}{}
|
|
\ccTypedef{typedef AlgebraicStructureTraits::AS second_argument_type;}{}
|
|
|
|
\ccOperations
|
|
\ccMethod{result_type operator()(
|
|
const first_argument_type& x,
|
|
const second_argument_type& y);}{ returns $x/y$, this is an integral division. }
|
|
|
|
%\ccHasModels
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{AlgebraicStructureTraits}
|
|
|
|
\end{ccRefConcept}
|