cgal/Algebraic_foundations/doc_tex/Algebraic_foundations_ref/AlgebraicStructureTraits_In...

34 lines
1.0 KiB
TeX

\begin{ccRefConcept}{AlgebraicStructureTraits::IntegralDivision}
\ccDefinition
\ccc{AdaptableBinaryFunction} providing an integral divison.
Integral division (a.k.a. exact division or division without remainder) maps
ring elements $(x,y)$ to ring element $z$ such that $x = yz$ if such a $z$
exists (i.e. if $x$ is divisible by $y$). Otherwise the effect of invoking
this operation is undefined. Since the ring represented is an integral domain,
$z$ is uniquely defined if it exists.
\ccRefines
\ccc{AdaptableUnaryFunction}
\ccTypes
\ccTypedef{typedef AlgebraicStructureTraits::AS result_type;}{}
\ccTypedef{typedef AlgebraicStructureTraits::AS first_argument_type;}{}
\ccTypedef{typedef AlgebraicStructureTraits::AS second_argument_type;}{}
\ccOperations
\ccMethod{result_type operator()(
const first_argument_type& x,
const second_argument_type& y);}{ returns $x/y$, this is an integral division. }
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{AlgebraicStructureTraits}
\end{ccRefConcept}