cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_MakeSqua...

40 lines
1.2 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::MakeSquareFreeUpToConstantFactor}
\ccDefinition
This \ccc{AdaptableFunctor} computes the square-free part of
a polynomial of type \ccc{PolynomialTraits_d::Polynomial_d}.
A polynomial $p$ can be factored into square-free and pairwise coprime
non-constant factors $g_i$ with multiplicities $m_i$ and a constant factor $a$,
such that $p = a \cdot g_1m_1 \cdot ... \cdot g_nm_n$.
This functor computes $g_1 \cdot ... \cdot g_n$.
\ccRefines
\ccc{AdaptableFunctor}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}
\ccOperations
\ccMethod{result_type operator()(first_argument_type p);}
{ return the square-free part of $p$.
\ccPostcond $multivriat_content(result) = 1$
}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\ccRefIdfierPage{PolynomialTraits_d::MakeSquareFree}\\
\ccRefIdfierPage{PolynomialTraits_d::SquareFreeFactorization}\\
\ccRefIdfierPage{PolynomialTraits_d::SquareFreeFactorizationUpToConstantFactor}\\
\end{ccRefConcept}