mirror of https://github.com/CGAL/cgal
43 lines
1.5 KiB
TeX
43 lines
1.5 KiB
TeX
\begin{ccRefConcept}{PolynomialTraits_d::EvaluateHomogeneous}
|
|
\ccDefinition
|
|
|
|
This \ccc{AdaptableFunctor} provides evaluation of a
|
|
\ccc{PolynomialTraits_d::Polynomial_d} interpreted as a homogeneous polynomial
|
|
in one variable. \\
|
|
For instance the polynomial $p = x^3 + x$ is interpreted as the homogeneous polynomial
|
|
$p(u,v) = u^3 + uv^2$ and evaluated as such.
|
|
|
|
\ccRefines
|
|
\ccc{AdaptableFunctor}
|
|
|
|
\ccTypes
|
|
|
|
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
|
|
\ccCreationVariable{fo}
|
|
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}
|
|
|
|
\ccOperations
|
|
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
|
|
PolynomialTraits_d::Coefficient_type u,
|
|
PolynomialTraits_d::Coefficient_type v);}
|
|
{ Returns $p(u,v)$, with respect to the outermost variable. \\
|
|
The homogeneous degree is considered as equal to the degree of $p$. }
|
|
|
|
|
|
\ccMethod{result_type operator()( PolynomialTraits_d::Polynomial_d p,
|
|
PolynomialTraits_d::Coefficient_type u,
|
|
PolynomialTraits_d::Coefficient_type v,
|
|
int i);}
|
|
{ Returns $p(u,v)$, with respect to the variable $x_i$. \\
|
|
The homogeneous degree is considered as equal to the $degree(p,i)$.
|
|
\ccPrecond $0 \leq i < d$}
|
|
|
|
%\ccHasModels
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{Polynomial_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d}\\
|
|
|
|
\end{ccRefConcept}
|