mirror of https://github.com/CGAL/cgal
6007 lines
176 KiB
C++
6007 lines
176 KiB
C++
// Copyright (c) 1999-2003 INRIA Sophia-Antipolis (France).
|
||
// All rights reserved.
|
||
//
|
||
// This file is part of CGAL (www.cgal.org).
|
||
// You can redistribute it and/or modify it under the terms of the GNU
|
||
// General Public License as published by the Free Software Foundation,
|
||
// either version 3 of the License, or (at your option) any later version.
|
||
//
|
||
// Licensees holding a valid commercial license may use this file in
|
||
// accordance with the commercial license agreement provided with the software.
|
||
//
|
||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
//
|
||
// $URL$
|
||
// $Id$
|
||
//
|
||
// Author(s) : Monique Teillaud <Monique.Teillaud@sophia.inria.fr>
|
||
// Sylvain Pion
|
||
|
||
#ifndef CGAL_TRIANGULATION_3_H
|
||
#define CGAL_TRIANGULATION_3_H
|
||
|
||
#include <CGAL/basic.h>
|
||
|
||
#include <iostream>
|
||
#include <list>
|
||
#include <set>
|
||
#include <map>
|
||
#include <utility>
|
||
#include <stack>
|
||
|
||
#include <CGAL/Unique_hash_map.h>
|
||
#include <CGAL/triangulation_assertions.h>
|
||
#include <CGAL/Triangulation_utils_3.h>
|
||
|
||
#include <CGAL/Triangulation_data_structure_3.h>
|
||
#include <CGAL/Triangulation_cell_base_3.h>
|
||
#include <CGAL/Triangulation_vertex_base_3.h>
|
||
|
||
#include <CGAL/spatial_sort.h>
|
||
|
||
#include <CGAL/iterator.h>
|
||
#include <CGAL/function_objects.h>
|
||
#include <CGAL/Iterator_project.h>
|
||
#include <CGAL/Unique_hash_map.h>
|
||
#include <CGAL/Default.h>
|
||
|
||
#include <boost/bind.hpp>
|
||
#include <boost/random/linear_congruential.hpp>
|
||
#include <boost/random/uniform_smallint.hpp>
|
||
#include <boost/random/variate_generator.hpp>
|
||
#include <boost/mpl/if.hpp>
|
||
|
||
#ifndef CGAL_NO_STRUCTURAL_FILTERING
|
||
#include <CGAL/Triangulation_structural_filtering_traits.h>
|
||
#include <CGAL/determinant.h>
|
||
#endif // no CGAL_NO_STRUCTURAL_FILTERING
|
||
|
||
#include <CGAL/Mesh_3/Locking_data_structures.h>
|
||
|
||
namespace CGAL {
|
||
|
||
template < class GT, class Tds = Default,
|
||
bool used_by_parallel_mesh_3 = false >
|
||
class Triangulation_3;
|
||
|
||
template < class GT, class Tds, bool Upm > std::istream& operator>>
|
||
(std::istream& is, Triangulation_3<GT,Tds,Upm> &tr);
|
||
|
||
#ifndef CGAL_NO_STRUCTURAL_FILTERING
|
||
namespace internal {
|
||
// structural filtering is performed only for EPIC
|
||
struct Structural_filtering_3_tag {};
|
||
struct No_structural_filtering_3_tag {};
|
||
|
||
template <bool filter>
|
||
struct Structural_filtering_selector_3 {
|
||
#ifdef FORCE_STRUCTURAL_FILTERING
|
||
typedef Structural_filtering_3_tag Tag;
|
||
#else
|
||
typedef No_structural_filtering_3_tag Tag;
|
||
#endif
|
||
};
|
||
|
||
template <>
|
||
struct Structural_filtering_selector_3<true> {
|
||
typedef Structural_filtering_3_tag Tag;
|
||
};
|
||
}
|
||
#endif // no CGAL_NO_STRUCTURAL_FILTERING
|
||
|
||
/************************************************
|
||
// Class Triangulation_3_base
|
||
// Two versions: sequential / parallel
|
||
************************************************/
|
||
|
||
// Sequential
|
||
template <bool used_by_parallel_mesh_3>
|
||
class Triangulation_3_base
|
||
{
|
||
protected:
|
||
Triangulation_3_base() {}
|
||
|
||
Triangulation_3_base(Mesh_3::LockDataStructureType *) {}
|
||
void swap(Triangulation_3_base<used_by_parallel_mesh_3> &tr) {}
|
||
|
||
public:
|
||
Mesh_3::LockDataStructureType *get_lock_data_structure() const
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
void set_lock_data_structure(Mesh_3::LockDataStructureType *) const
|
||
{
|
||
}
|
||
|
||
void unlock_all_elements() {}
|
||
};
|
||
|
||
#ifdef CGAL_LINKED_WITH_TBB
|
||
// Parallel
|
||
template <>
|
||
class Triangulation_3_base<true>
|
||
{
|
||
protected:
|
||
Triangulation_3_base()
|
||
: m_lock_ds(0) {}
|
||
|
||
Triangulation_3_base(Mesh_3::LockDataStructureType *p_lock_ds)
|
||
: m_lock_ds(p_lock_ds) {}
|
||
|
||
void swap(Triangulation_3_base<true> &tr)
|
||
{
|
||
std::swap(tr.m_lock_ds, m_lock_ds);
|
||
}
|
||
|
||
public:
|
||
Mesh_3::LockDataStructureType *get_lock_data_structure() const
|
||
{
|
||
return m_lock_ds;
|
||
}
|
||
|
||
void set_lock_data_structure(Mesh_3::LockDataStructureType *p_lock_ds)
|
||
{
|
||
m_lock_ds = p_lock_ds;
|
||
}
|
||
|
||
void unlock_all_elements()
|
||
{
|
||
if (m_lock_ds)
|
||
{
|
||
m_lock_ds->unlock_all_tls_locked_cells();
|
||
}
|
||
}
|
||
|
||
protected:
|
||
Mesh_3::LockDataStructureType *m_lock_ds;
|
||
};
|
||
#endif // CGAL_LINKED_WITH_TBB
|
||
|
||
/************************************************
|
||
*
|
||
* Triangulation_3 class
|
||
*
|
||
************************************************/
|
||
|
||
template < class GT, class Tds_, bool used_by_parallel_mesh_3 >
|
||
class Triangulation_3
|
||
: public Triangulation_3_base<used_by_parallel_mesh_3>
|
||
, public Triangulation_utils_3
|
||
{
|
||
friend std::istream& operator>> <>
|
||
(std::istream& is, Triangulation_3<GT,Tds_,used_by_parallel_mesh_3> &tr);
|
||
|
||
typedef Triangulation_3<GT, Tds_, used_by_parallel_mesh_3> Self;
|
||
typedef Triangulation_3_base<used_by_parallel_mesh_3> Base;
|
||
|
||
typedef typename Default::Get
|
||
<
|
||
Tds_,
|
||
Triangulation_data_structure_3
|
||
<
|
||
Triangulation_vertex_base_3<GT>,
|
||
Triangulation_cell_base_3
|
||
<
|
||
GT
|
||
// Force lazy cells if used by parallel Mesh_3
|
||
#if defined(CGAL_LINKED_WITH_TBB) \
|
||
&& !defined(CGAL_MESH_3_USE_LAZY_SORTED_REFINEMENT_QUEUE) \
|
||
&& !defined(CGAL_MESH_3_USE_LAZY_UNSORTED_REFINEMENT_QUEUE)
|
||
,typename boost::mpl::if_c
|
||
<
|
||
used_by_parallel_mesh_3,
|
||
Triangulation_lazy_ds_cell_base_3<>,
|
||
Triangulation_ds_cell_base_3<>
|
||
>::type
|
||
#endif
|
||
>
|
||
>
|
||
>::type Tds;
|
||
|
||
public:
|
||
|
||
typedef Tds Triangulation_data_structure;
|
||
typedef GT Geom_traits;
|
||
|
||
typedef typename GT::Point_3 Point;
|
||
typedef typename GT::Segment_3 Segment;
|
||
typedef typename GT::Triangle_3 Triangle;
|
||
typedef typename GT::Tetrahedron_3 Tetrahedron;
|
||
|
||
typedef typename Tds::Vertex Vertex;
|
||
typedef typename Tds::Cell Cell;
|
||
typedef typename Tds::Facet Facet;
|
||
typedef typename Tds::Edge Edge;
|
||
|
||
typedef typename Tds::size_type size_type;
|
||
typedef typename Tds::difference_type difference_type;
|
||
|
||
typedef typename Tds::Vertex_handle Vertex_handle;
|
||
typedef typename Tds::Cell_handle Cell_handle;
|
||
|
||
typedef typename Tds::Cell_circulator Cell_circulator;
|
||
typedef typename Tds::Facet_circulator Facet_circulator;
|
||
|
||
// Not documented, see TDS.
|
||
typedef typename Tds::Face_circulator Face_circulator;
|
||
|
||
typedef typename Tds::Cell_iterator Cell_iterator;
|
||
typedef typename Tds::Facet_iterator Facet_iterator;
|
||
typedef typename Tds::Edge_iterator Edge_iterator;
|
||
typedef typename Tds::Vertex_iterator Vertex_iterator;
|
||
|
||
typedef Cell_iterator All_cells_iterator;
|
||
typedef Facet_iterator All_facets_iterator;
|
||
typedef Edge_iterator All_edges_iterator;
|
||
typedef Vertex_iterator All_vertices_iterator;
|
||
|
||
typedef typename Tds::Simplex Simplex;
|
||
private:
|
||
// This class is used to generate the Finite_*_iterators.
|
||
class Infinite_tester
|
||
{
|
||
const Self *t;
|
||
|
||
public:
|
||
|
||
Infinite_tester() {}
|
||
|
||
Infinite_tester(const Self *tr)
|
||
: t(tr) {}
|
||
|
||
bool operator()(const Vertex_iterator & v) const
|
||
{
|
||
return t->is_infinite(v);
|
||
}
|
||
|
||
bool operator()(const Cell_iterator & c) const
|
||
{
|
||
return t->is_infinite(c);
|
||
}
|
||
|
||
bool operator()(const Edge_iterator & e) const
|
||
{
|
||
return t->is_infinite(*e);
|
||
}
|
||
|
||
bool operator()(const Facet_iterator & f) const
|
||
{
|
||
return t->is_infinite(*f);
|
||
}
|
||
};
|
||
|
||
public:
|
||
|
||
// We derive in order to add a conversion to handle.
|
||
class Finite_cells_iterator
|
||
: public Filter_iterator<Cell_iterator, Infinite_tester> {
|
||
typedef Filter_iterator<Cell_iterator, Infinite_tester> Base;
|
||
typedef Finite_cells_iterator Self;
|
||
public:
|
||
|
||
Finite_cells_iterator() : Base() {}
|
||
Finite_cells_iterator(const Base &b) : Base(b) {}
|
||
|
||
Self & operator++() { Base::operator++(); return *this; }
|
||
Self & operator--() { Base::operator--(); return *this; }
|
||
Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
|
||
Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
|
||
|
||
operator Cell_handle() const { return Base::base(); }
|
||
};
|
||
|
||
// We derive in order to add a conversion to handle.
|
||
class Finite_vertices_iterator
|
||
: public Filter_iterator<Vertex_iterator, Infinite_tester> {
|
||
typedef Filter_iterator<Vertex_iterator, Infinite_tester> Base;
|
||
typedef Finite_vertices_iterator Self;
|
||
public:
|
||
|
||
Finite_vertices_iterator() : Base() {}
|
||
Finite_vertices_iterator(const Base &b) : Base(b) {}
|
||
|
||
Self & operator++() { Base::operator++(); return *this; }
|
||
Self & operator--() { Base::operator--(); return *this; }
|
||
Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
|
||
Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
|
||
|
||
operator Vertex_handle() const { return Base::base(); }
|
||
};
|
||
|
||
typedef Filter_iterator<Edge_iterator, Infinite_tester>
|
||
Finite_edges_iterator;
|
||
typedef Filter_iterator<Facet_iterator, Infinite_tester>
|
||
Finite_facets_iterator;
|
||
|
||
private:
|
||
// Auxiliary iterators for convenience
|
||
// do not use default template argument to please VC++
|
||
typedef Project_point<Vertex> Proj_point;
|
||
public:
|
||
typedef Iterator_project<Finite_vertices_iterator,
|
||
Proj_point,
|
||
const Point&,
|
||
const Point*,
|
||
std::ptrdiff_t,
|
||
std::bidirectional_iterator_tag> Point_iterator;
|
||
|
||
typedef Point value_type; // to have a back_inserter
|
||
typedef const value_type& const_reference;
|
||
|
||
//Tag to distinguish triangulations with weighted_points
|
||
typedef Tag_false Weighted_tag;
|
||
|
||
|
||
|
||
enum Locate_type {
|
||
VERTEX=0,
|
||
EDGE, //1
|
||
FACET, //2
|
||
CELL, //3
|
||
OUTSIDE_CONVEX_HULL, //4
|
||
OUTSIDE_AFFINE_HULL };//5
|
||
|
||
protected:
|
||
Tds _tds;
|
||
GT _gt;
|
||
Vertex_handle infinite; //infinite vertex
|
||
|
||
Comparison_result
|
||
compare_xyz(const Point &p, const Point &q) const
|
||
{
|
||
return geom_traits().compare_xyz_3_object()(p, q);
|
||
}
|
||
|
||
bool
|
||
equal(const Point &p, const Point &q) const
|
||
{
|
||
return compare_xyz(p, q) == EQUAL;
|
||
}
|
||
|
||
Orientation
|
||
orientation(const Point &p, const Point &q,
|
||
const Point &r, const Point &s) const
|
||
{
|
||
return geom_traits().orientation_3_object()(p, q, r, s);
|
||
}
|
||
|
||
bool
|
||
coplanar(const Point &p, const Point &q,
|
||
const Point &r, const Point &s) const
|
||
{
|
||
return orientation(p, q, r, s) == COPLANAR;
|
||
}
|
||
|
||
Orientation
|
||
coplanar_orientation(const Point &p, const Point &q, const Point &r) const
|
||
{
|
||
return geom_traits().coplanar_orientation_3_object()(p, q, r);
|
||
}
|
||
|
||
bool
|
||
collinear(const Point &p, const Point &q, const Point &r) const
|
||
{
|
||
return coplanar_orientation(p, q, r) == COLLINEAR;
|
||
}
|
||
|
||
Segment
|
||
construct_segment(const Point &p, const Point &q) const
|
||
{
|
||
return geom_traits().construct_segment_3_object()(p, q);
|
||
}
|
||
|
||
Triangle
|
||
construct_triangle(const Point &p, const Point &q, const Point &r) const
|
||
{
|
||
return geom_traits().construct_triangle_3_object()(p, q, r);
|
||
}
|
||
|
||
Tetrahedron
|
||
construct_tetrahedron(const Point &p, const Point &q,
|
||
const Point &r, const Point &s) const
|
||
{
|
||
return geom_traits().construct_tetrahedron_3_object()(p, q, r, s);
|
||
}
|
||
|
||
enum COLLINEAR_POSITION {BEFORE, SOURCE, MIDDLE, TARGET, AFTER};
|
||
|
||
COLLINEAR_POSITION
|
||
collinear_position(const Point &s, const Point &p, const Point &t) const
|
||
// (s,t) defines a line, p is on that line.
|
||
// Depending on the position of p wrt s and t, returns :
|
||
// --------------- s ---------------- t --------------
|
||
// BEFORE SOURCE MIDDLE TARGET AFTER
|
||
{
|
||
CGAL_triangulation_precondition(!equal(s, t));
|
||
CGAL_triangulation_precondition(collinear(s, p, t));
|
||
|
||
Comparison_result ps = compare_xyz(p, s);
|
||
if (ps == EQUAL)
|
||
return SOURCE;
|
||
Comparison_result st = compare_xyz(s, t);
|
||
if (ps == st)
|
||
return BEFORE;
|
||
Comparison_result pt = compare_xyz(p, t);
|
||
if (pt == EQUAL)
|
||
return TARGET;
|
||
if (pt == st)
|
||
return MIDDLE;
|
||
return AFTER;
|
||
}
|
||
|
||
void init_tds()
|
||
{
|
||
infinite = _tds.insert_increase_dimension();
|
||
}
|
||
|
||
public:
|
||
|
||
// CONSTRUCTORS
|
||
Triangulation_3(const GT & gt = GT())
|
||
: _tds(), _gt(gt)
|
||
{
|
||
init_tds();
|
||
}
|
||
|
||
// copy constructor duplicates vertices and cells
|
||
Triangulation_3(const Triangulation_3 & tr)
|
||
: _gt(tr._gt),
|
||
Base(tr.get_lock_data_structure())
|
||
{
|
||
infinite = _tds.copy_tds(tr._tds, tr.infinite);
|
||
CGAL_triangulation_expensive_postcondition(*this == tr);
|
||
}
|
||
|
||
template < typename InputIterator >
|
||
Triangulation_3(InputIterator first, InputIterator last,
|
||
const GT & gt = GT())
|
||
: _gt(gt)
|
||
{
|
||
init_tds();
|
||
insert(first, last);
|
||
}
|
||
|
||
void clear()
|
||
{
|
||
_tds.clear();
|
||
init_tds();
|
||
}
|
||
|
||
Triangulation_3 & operator=(Triangulation_3 tr)
|
||
{
|
||
// The triangulation passed as argument has been copied,
|
||
// because the parameter tr is passed by value. Then the following
|
||
// swap consumes the *copy*. The original triangulation is left
|
||
// untouched.
|
||
swap(tr);
|
||
return *this;
|
||
}
|
||
|
||
// HELPING FUNCTIONS
|
||
|
||
void swap(Triangulation_3 &tr)
|
||
{
|
||
std::swap(tr._gt, _gt);
|
||
std::swap(tr.infinite, infinite);
|
||
_tds.swap(tr._tds);
|
||
Base::swap(tr);
|
||
}
|
||
|
||
//ACCESS FUNCTIONS
|
||
const GT & geom_traits() const
|
||
{ return _gt;}
|
||
|
||
const Tds & tds() const
|
||
{ return _tds;}
|
||
|
||
Tds & tds()
|
||
{ return _tds;}
|
||
|
||
int dimension() const
|
||
{ return _tds.dimension();}
|
||
|
||
size_type number_of_finite_cells() const;
|
||
|
||
size_type number_of_cells() const;
|
||
|
||
size_type number_of_finite_facets() const;
|
||
|
||
size_type number_of_facets() const;
|
||
|
||
size_type number_of_finite_edges() const;
|
||
|
||
size_type number_of_edges() const;
|
||
|
||
size_type number_of_vertices() const // number of finite vertices
|
||
{return _tds.number_of_vertices()-1;}
|
||
|
||
Vertex_handle infinite_vertex() const
|
||
{ return infinite; }
|
||
|
||
Cell_handle infinite_cell() const
|
||
{
|
||
CGAL_triangulation_assertion(infinite_vertex()->cell()->
|
||
has_vertex(infinite_vertex()));
|
||
return infinite_vertex()->cell();
|
||
}
|
||
|
||
// GEOMETRIC ACCESS FUNCTIONS
|
||
|
||
Tetrahedron tetrahedron(const Cell_handle c) const
|
||
{
|
||
CGAL_triangulation_precondition( dimension() == 3 );
|
||
CGAL_triangulation_precondition( ! is_infinite(c) );
|
||
return construct_tetrahedron(c->vertex(0)->point(),
|
||
c->vertex(1)->point(),
|
||
c->vertex(2)->point(),
|
||
c->vertex(3)->point());
|
||
}
|
||
|
||
Triangle triangle(const Cell_handle c, int i) const;
|
||
|
||
Triangle triangle(const Facet & f) const
|
||
{ return triangle(f.first, f.second); }
|
||
|
||
Segment segment(const Cell_handle c, int i, int j) const;
|
||
|
||
Segment segment(const Edge & e) const
|
||
{ return segment(e.first,e.second,e.third); }
|
||
|
||
const Point & point(Cell_handle c, int i) const {
|
||
CGAL_triangulation_precondition( dimension() >= 0 );
|
||
CGAL_triangulation_precondition( i >= 0 && i <= dimension() );
|
||
CGAL_triangulation_precondition( ! is_infinite(c->vertex(i)) );
|
||
return c->vertex(i)->point();
|
||
}
|
||
|
||
const Point & point(Vertex_handle v) const {
|
||
CGAL_triangulation_precondition( dimension() >= 0 );
|
||
CGAL_triangulation_precondition( ! is_infinite(v) );
|
||
return v->point();
|
||
}
|
||
|
||
// TEST IF INFINITE FEATURES
|
||
bool is_infinite(const Vertex_handle v) const
|
||
{ return v == infinite_vertex(); }
|
||
|
||
bool is_infinite(const Cell_handle c) const
|
||
{
|
||
CGAL_triangulation_precondition( dimension() == 3 );
|
||
return c->has_vertex(infinite_vertex());
|
||
}
|
||
|
||
bool is_infinite(const Cell_handle c, int i) const;
|
||
|
||
bool is_infinite(const Facet & f) const
|
||
{ return is_infinite(f.first,f.second); }
|
||
|
||
bool is_infinite(const Cell_handle c, int i, int j) const;
|
||
|
||
bool is_infinite(const Edge & e) const
|
||
{ return is_infinite(e.first,e.second,e.third); }
|
||
|
||
|
||
//QUERIES
|
||
|
||
bool is_vertex(const Point & p, Vertex_handle & v) const;
|
||
|
||
bool is_vertex(Vertex_handle v) const;
|
||
bool is_edge(Vertex_handle u, Vertex_handle v,
|
||
Cell_handle & c, int & i, int & j) const;
|
||
bool is_facet(Vertex_handle u, Vertex_handle v, Vertex_handle w,
|
||
Cell_handle & c, int & i, int & j, int & k) const;
|
||
bool is_cell(Cell_handle c) const;
|
||
bool is_cell(Vertex_handle u, Vertex_handle v,
|
||
Vertex_handle w, Vertex_handle t,
|
||
Cell_handle & c, int & i, int & j, int & k, int & l) const;
|
||
bool is_cell(Vertex_handle u, Vertex_handle v,
|
||
Vertex_handle w, Vertex_handle t,
|
||
Cell_handle & c) const;
|
||
|
||
bool has_vertex(const Facet & f, Vertex_handle v, int & j) const;
|
||
bool has_vertex(Cell_handle c, int i, Vertex_handle v, int & j) const;
|
||
bool has_vertex(const Facet & f, Vertex_handle v) const;
|
||
bool has_vertex(Cell_handle c, int i, Vertex_handle v) const;
|
||
|
||
bool are_equal(Cell_handle c, int i, Cell_handle n, int j) const;
|
||
bool are_equal(const Facet & f, const Facet & g) const;
|
||
bool are_equal(const Facet & f, Cell_handle n, int j) const;
|
||
|
||
#ifdef CGAL_NO_STRUCTURAL_FILTERING
|
||
Cell_handle
|
||
locate(const Point & p,
|
||
Locate_type & lt, int & li, int & lj,
|
||
Cell_handle start = Cell_handle()) const;
|
||
// CJTODO: attention, ce #else va loin => j'ai mis try_lock_vertex, etc <20> l'int<6E>rieur => BUG ?
|
||
#else // no CGAL_NO_STRUCTURAL_FILTERING
|
||
# ifndef CGAL_T3_STRUCTURAL_FILTERING_MAX_VISITED_CELLS
|
||
# define CGAL_T3_STRUCTURAL_FILTERING_MAX_VISITED_CELLS 2500
|
||
# endif // no CGAL_T3_STRUCTURAL_FILTERING_MAX_VISITED_CELLS
|
||
|
||
|
||
public:
|
||
// LOCKS (CONCURRENCY)
|
||
|
||
bool try_lock_vertex(Vertex_handle vh, int lock_radius = 0) const
|
||
{
|
||
#ifdef CGAL_LINKED_WITH_TBB
|
||
// Parallel Mesh_3
|
||
if (used_by_parallel_mesh_3)
|
||
{
|
||
Mesh_3::LockDataStructureType *p_lock_ds = Base::get_lock_data_structure();
|
||
if (p_lock_ds)
|
||
{
|
||
# ifdef CGAL_MESH_3_ACTIVATE_GRID_INDEX_CACHE_IN_VERTEX
|
||
int grid_index = vh->get_grid_index_cache();
|
||
if (grid_index >= 0)
|
||
{
|
||
if (p_lock_ds->try_lock(grid_index, lock_radius))
|
||
{
|
||
// Has the cached valeu changed in the meantime?
|
||
if (vh->get_grid_index_cache() == grid_index)
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
std::pair<bool, int> r = p_lock_ds->try_lock(vh->point(), lock_radius);
|
||
vh->set_grid_index_cache(r.second);
|
||
return r.first;
|
||
}
|
||
# else
|
||
return p_lock_ds->try_lock(vh->point(), lock_radius).first;
|
||
# endif
|
||
}
|
||
}
|
||
#endif // CGAL_LINKED_WITH_TBB
|
||
return true;
|
||
}
|
||
|
||
bool try_lock_element(Cell_handle cell_handle, int lock_radius = 0) const
|
||
{
|
||
bool success = true;
|
||
|
||
#ifdef CGAL_LINKED_WITH_TBB
|
||
# ifdef CGAL_MESH_3_LOCKING_STRATEGY_SIMPLE_GRID_LOCKING
|
||
if (used_by_parallel_mesh_3)
|
||
{
|
||
// Lock the element area on the grid
|
||
for (int iVertex = 0 ; success && iVertex < 4 ; ++iVertex)
|
||
{
|
||
Vertex_handle vh = cell_handle->vertex(iVertex);
|
||
|
||
success = try_lock_vertex(vh, lock_radius);
|
||
}
|
||
}
|
||
# endif
|
||
#endif // CGAL_LINKED_WITH_TBB
|
||
|
||
return success;
|
||
}
|
||
bool try_lock_element(const Facet &facet, int lock_radius = 0) const
|
||
{
|
||
bool success = true;
|
||
|
||
#ifdef CGAL_LINKED_WITH_TBB
|
||
# ifdef CGAL_MESH_3_LOCKING_STRATEGY_SIMPLE_GRID_LOCKING
|
||
if (used_by_parallel_mesh_3)
|
||
{
|
||
// Lock the element area on the grid
|
||
Cell_handle cell = facet.first;
|
||
for (int iVertex = (facet.second+1)&3 ;
|
||
success && iVertex != facet.second ; iVertex = (iVertex+1)&3)
|
||
{
|
||
Vertex_handle vh = cell->vertex(iVertex);
|
||
success = try_lock_vertex(vh, lock_radius);
|
||
}
|
||
}
|
||
# endif // CGAL_MESH_3_LOCKING_STRATEGY_SIMPLE_GRID_LOCKING
|
||
#endif // CGAL_LINKED_WITH_TBB
|
||
|
||
return success;
|
||
}
|
||
|
||
template <typename P3>
|
||
bool is_point_locked_by_this_thread(const P3 &p) const
|
||
{
|
||
bool locked = true;
|
||
#ifdef CGAL_LINKED_WITH_TBB
|
||
# ifdef CGAL_MESH_3_LOCKING_STRATEGY_SIMPLE_GRID_LOCKING
|
||
Mesh_3::LockDataStructureType *p_lock_ds = Base::get_lock_data_structure();
|
||
if (p_lock_ds)
|
||
{
|
||
locked = p_lock_ds->is_locked_by_this_thread(p);
|
||
}
|
||
# endif // CGAL_MESH_3_LOCKING_STRATEGY_SIMPLE_GRID_LOCKING
|
||
#endif // CGAL_LINKED_WITH_TBB
|
||
return locked;
|
||
}
|
||
|
||
bool is_element_locked_by_this_thread(Cell_handle cell_handle) const
|
||
{
|
||
bool locked = true;
|
||
#ifdef CGAL_LINKED_WITH_TBB
|
||
# ifdef CGAL_MESH_3_LOCKING_STRATEGY_SIMPLE_GRID_LOCKING
|
||
Mesh_3::LockDataStructureType *p_lock_ds = Base::get_lock_data_structure();
|
||
if (p_lock_ds)
|
||
{
|
||
locked = p_lock_ds->is_tetrahedra_locked_by_this_thread(*cell_handle);
|
||
}
|
||
# endif // CGAL_MESH_3_LOCKING_STRATEGY_SIMPLE_GRID_LOCKING
|
||
#endif // CGAL_LINKED_WITH_TBB
|
||
return locked;
|
||
}
|
||
|
||
Cell_handle
|
||
inexact_locate(const Point& p,
|
||
Cell_handle start,
|
||
bool *p_could_lock_zone = 0,
|
||
int max_num_cells = CGAL_T3_STRUCTURAL_FILTERING_MAX_VISITED_CELLS) const;
|
||
protected:
|
||
Cell_handle
|
||
exact_locate(const Point& p,
|
||
Locate_type& lt,
|
||
int& li, int & lj,
|
||
Cell_handle start,
|
||
bool *p_could_lock_zone = 0
|
||
) const;
|
||
|
||
Cell_handle
|
||
generic_locate(const Point& p,
|
||
Locate_type& lt,
|
||
int& li, int & lj,
|
||
Cell_handle start,
|
||
internal::Structural_filtering_3_tag,
|
||
bool *p_could_lock_zone = 0) const
|
||
{
|
||
Cell_handle ch = inexact_locate(p, start, p_could_lock_zone);
|
||
if (p_could_lock_zone && *p_could_lock_zone == false)
|
||
return ch; // = Cell_handle() here
|
||
else
|
||
return exact_locate(p, lt, li, lj, ch, p_could_lock_zone);
|
||
}
|
||
|
||
Cell_handle
|
||
generic_locate(const Point& p,
|
||
Locate_type& lt,
|
||
int& li, int & lj,
|
||
Cell_handle start,
|
||
internal::No_structural_filtering_3_tag
|
||
, bool *p_could_lock_zone = 0) const
|
||
{
|
||
return exact_locate(p, lt, li, lj, start, p_could_lock_zone);
|
||
}
|
||
|
||
public:
|
||
Orientation
|
||
inexact_orientation(const Point &p, const Point &q,
|
||
const Point &r, const Point &s) const
|
||
{
|
||
const double px = to_double(p.x());
|
||
const double py = to_double(p.y());
|
||
const double pz = to_double(p.z());
|
||
const double qx = to_double(q.x());
|
||
const double qy = to_double(q.y());
|
||
const double qz = to_double(q.z());
|
||
const double rx = to_double(r.x());
|
||
const double ry = to_double(r.y());
|
||
const double rz = to_double(r.z());
|
||
const double sx = to_double(s.x());
|
||
const double sy = to_double(s.y());
|
||
const double sz = to_double(s.z());
|
||
|
||
const double pqx = qx - px;
|
||
const double pqy = qy - py;
|
||
const double pqz = qz - pz;
|
||
const double prx = rx - px;
|
||
const double pry = ry - py;
|
||
const double prz = rz - pz;
|
||
const double psx = sx - px;
|
||
const double psy = sy - py;
|
||
const double psz = sz - pz;
|
||
|
||
const double det = determinant(pqx, pqy, pqz,
|
||
prx, pry, prz,
|
||
psx, psy, psz);
|
||
if (det > 0) return POSITIVE;
|
||
if (det < 0) return NEGATIVE;
|
||
return ZERO;
|
||
}
|
||
|
||
public:
|
||
|
||
Cell_handle
|
||
locate(const Point & p,
|
||
Locate_type & lt, int & li, int & lj,
|
||
Cell_handle start = Cell_handle()
|
||
, bool *p_could_lock_zone = 0
|
||
) const
|
||
{
|
||
typedef Triangulation_structural_filtering_traits<Geom_traits> TSFT;
|
||
typedef typename internal::Structural_filtering_selector_3<
|
||
TSFT::Use_structural_filtering_tag::value >::Tag Should_filter_tag;
|
||
|
||
return generic_locate(p, lt, li, lj, start, Should_filter_tag(), p_could_lock_zone);
|
||
}
|
||
#endif // no CGAL_NO_STRUCTURAL_FILTERING
|
||
|
||
Cell_handle
|
||
locate(const Point & p, Cell_handle start = Cell_handle(),
|
||
bool *p_could_lock_zone = 0) const
|
||
{
|
||
Locate_type lt;
|
||
int li, lj;
|
||
return locate( p, lt, li, lj, start, p_could_lock_zone);
|
||
}
|
||
|
||
Cell_handle
|
||
locate(const Point & p,
|
||
Locate_type & lt, int & li, int & lj, Vertex_handle hint,
|
||
bool *p_could_lock_zone = 0) const
|
||
{
|
||
return locate(p, lt, li, lj,
|
||
hint == Vertex_handle() ? infinite_cell() : hint->cell(),
|
||
p_could_lock_zone);
|
||
}
|
||
|
||
Cell_handle
|
||
locate(const Point & p, Vertex_handle hint,
|
||
bool *p_could_lock_zone = 0) const
|
||
{
|
||
return locate(p, hint == Vertex_handle() ? infinite_cell() : hint->cell(),
|
||
p_could_lock_zone);
|
||
}
|
||
|
||
// PREDICATES ON POINTS ``TEMPLATED'' by the geom traits
|
||
|
||
Bounded_side
|
||
side_of_tetrahedron(const Point & p,
|
||
const Point & p0,
|
||
const Point & p1,
|
||
const Point & p2,
|
||
const Point & p3,
|
||
Locate_type & lt, int & i, int & j ) const;
|
||
Bounded_side
|
||
side_of_cell(const Point & p,
|
||
Cell_handle c,
|
||
Locate_type & lt, int & i, int & j) const;
|
||
Bounded_side
|
||
side_of_triangle(const Point & p,
|
||
const Point & p0, const Point & p1, const Point & p2,
|
||
Locate_type & lt, int & i, int & j ) const;
|
||
Bounded_side
|
||
side_of_facet(const Point & p,
|
||
Cell_handle c,
|
||
Locate_type & lt, int & li, int & lj) const;
|
||
Bounded_side
|
||
side_of_facet(const Point & p,
|
||
const Facet & f,
|
||
Locate_type & lt, int & li, int & lj) const
|
||
{
|
||
CGAL_triangulation_precondition( f.second == 3 );
|
||
return side_of_facet(p, f.first, lt, li, lj);
|
||
}
|
||
Bounded_side
|
||
side_of_segment(const Point & p,
|
||
const Point & p0, const Point & p1,
|
||
Locate_type & lt, int & i ) const;
|
||
Bounded_side
|
||
side_of_edge(const Point & p,
|
||
Cell_handle c,
|
||
Locate_type & lt, int & li) const;
|
||
Bounded_side
|
||
side_of_edge(const Point & p,
|
||
const Edge & e,
|
||
Locate_type & lt, int & li) const
|
||
{
|
||
CGAL_triangulation_precondition( e.second == 0 );
|
||
CGAL_triangulation_precondition( e.third == 1 );
|
||
return side_of_edge(p, e.first, lt, li);
|
||
}
|
||
|
||
// Functions forwarded from TDS.
|
||
int mirror_index(Cell_handle c, int i) const
|
||
{ return _tds.mirror_index(c, i); }
|
||
|
||
Vertex_handle mirror_vertex(Cell_handle c, int i) const
|
||
{ return _tds.mirror_vertex(c, i); }
|
||
|
||
Facet mirror_facet(Facet f) const
|
||
{ return _tds.mirror_facet(f);}
|
||
|
||
// MODIFIERS
|
||
bool flip(const Facet &f)
|
||
// returns false if the facet is not flippable
|
||
// true other wise and
|
||
// flips facet i of cell c
|
||
// c will be replaced by one of the new cells
|
||
{
|
||
return flip( f.first, f.second);
|
||
}
|
||
bool flip(Cell_handle c, int i);
|
||
void flip_flippable(const Facet &f)
|
||
{
|
||
flip_flippable( f.first, f.second);
|
||
}
|
||
void flip_flippable(Cell_handle c, int i);
|
||
bool flip(const Edge &e)
|
||
// returns false if the edge is not flippable
|
||
// true otherwise and
|
||
// flips edge i,j of cell c
|
||
// c will be deleted
|
||
{
|
||
return flip( e.first, e.second, e.third );
|
||
}
|
||
bool flip(Cell_handle c, int i, int j);
|
||
void flip_flippable(const Edge &e)
|
||
{
|
||
flip_flippable( e.first, e.second, e.third );
|
||
}
|
||
void flip_flippable(Cell_handle c, int i, int j);
|
||
|
||
//INSERTION
|
||
|
||
Vertex_handle insert(const Point & p, Vertex_handle hint)
|
||
{
|
||
return insert(p, hint == Vertex_handle() ? infinite_cell() : hint->cell());
|
||
}
|
||
Vertex_handle insert(const Point & p, Cell_handle start = Cell_handle());
|
||
Vertex_handle insert(const Point & p, Locate_type lt, Cell_handle c,
|
||
int li, int lj);
|
||
|
||
//protected: // internal methods
|
||
|
||
template <class OutputItCells>
|
||
Vertex_handle insert_and_give_new_cells(const Point &p,
|
||
OutputItCells fit,
|
||
Cell_handle start = Cell_handle() );
|
||
|
||
template <class OutputItCells>
|
||
Vertex_handle insert_and_give_new_cells(const Point& p,
|
||
OutputItCells fit,
|
||
Vertex_handle hint);
|
||
|
||
template <class OutputItCells>
|
||
Vertex_handle insert_and_give_new_cells(const Point& p,
|
||
Locate_type lt,
|
||
Cell_handle c, int li, int lj,
|
||
OutputItCells fit);
|
||
|
||
template < class Conflict_tester, class Hidden_points_visitor >
|
||
inline Vertex_handle insert_in_conflict(const Point & p,
|
||
Locate_type lt,
|
||
Cell_handle c, int li, int lj,
|
||
const Conflict_tester &tester,
|
||
Hidden_points_visitor &hider);
|
||
|
||
template < class InputIterator >
|
||
std::ptrdiff_t insert(InputIterator first, InputIterator last)
|
||
{
|
||
size_type n = number_of_vertices();
|
||
|
||
std::vector<Point> points (first, last);
|
||
spatial_sort (points.begin(), points.end(), geom_traits());
|
||
|
||
Vertex_handle hint;
|
||
for (typename std::vector<Point>::const_iterator p = points.begin(), end = points.end();
|
||
p != end; ++p)
|
||
hint = insert(*p, hint);
|
||
|
||
return number_of_vertices() - n;
|
||
}
|
||
|
||
Vertex_handle
|
||
insert_in_cell(const Point & p, Cell_handle c);
|
||
|
||
Vertex_handle
|
||
insert_in_facet(const Point & p, Cell_handle c, int i);
|
||
|
||
Vertex_handle
|
||
insert_in_facet(const Point & p, const Facet & f)
|
||
{
|
||
return insert_in_facet(p, f.first, f.second);
|
||
}
|
||
|
||
Vertex_handle
|
||
insert_in_edge(const Point & p, Cell_handle c, int i, int j);
|
||
|
||
Vertex_handle
|
||
insert_in_edge(const Point & p, const Edge & e)
|
||
{
|
||
return insert_in_edge(p, e.first, e.second, e.third);
|
||
}
|
||
|
||
Vertex_handle
|
||
insert_outside_convex_hull(const Point & p, Cell_handle c);
|
||
|
||
Vertex_handle
|
||
insert_outside_affine_hull(const Point & p);
|
||
|
||
template <class CellIt>
|
||
Vertex_handle
|
||
insert_in_hole(const Point & p, CellIt cell_begin, CellIt cell_end,
|
||
Cell_handle begin, int i)
|
||
{
|
||
// Some geometric preconditions should be tested...
|
||
Vertex_handle v = _tds.insert_in_hole(cell_begin, cell_end, begin, i);
|
||
v->set_point(p);
|
||
return v;
|
||
}
|
||
|
||
template <class CellIt>
|
||
Vertex_handle
|
||
insert_in_hole(const Point & p, CellIt cell_begin, CellIt cell_end,
|
||
Cell_handle begin, int i, Vertex_handle newv)
|
||
{
|
||
// Some geometric preconditions should be tested...
|
||
newv->set_point(p);
|
||
return _tds.insert_in_hole(cell_begin, cell_end, begin, i, newv);
|
||
}
|
||
|
||
// Internal function, cells should already be marked.
|
||
template <class CellIt>
|
||
Vertex_handle
|
||
_insert_in_hole(const Point & p, CellIt cell_begin, CellIt cell_end,
|
||
Cell_handle begin, int i)
|
||
{
|
||
// Some geometric preconditions should be tested...
|
||
Vertex_handle v = _tds._insert_in_hole(cell_begin, cell_end, begin, i);
|
||
v->set_point(p);
|
||
return v;
|
||
}
|
||
|
||
// Internal function, cells should already be marked.
|
||
template <class CellIt>
|
||
Vertex_handle
|
||
_insert_in_hole(const Point & p, CellIt cell_begin, CellIt cell_end,
|
||
Cell_handle begin, int i, Vertex_handle newv)
|
||
{
|
||
// Some geometric preconditions should be tested...
|
||
newv->set_point(p);
|
||
return _tds._insert_in_hole(cell_begin, cell_end, begin, i, newv);
|
||
}
|
||
|
||
protected:
|
||
|
||
template < class InputIterator >
|
||
bool does_repeat_in_range(InputIterator first, InputIterator beyond) const;
|
||
|
||
template < class InputIterator >
|
||
bool infinite_vertex_in_range(InputIterator first, InputIterator beyond) const;
|
||
|
||
|
||
// - c is the current cell, which must be in conflict.
|
||
// - tester is the function object that tests if a cell is in conflict.
|
||
template <
|
||
class Conflict_test,
|
||
class OutputIteratorBoundaryFacets,
|
||
class OutputIteratorCells,
|
||
class OutputIteratorInternalFacets>
|
||
Triple<OutputIteratorBoundaryFacets,
|
||
OutputIteratorCells,
|
||
OutputIteratorInternalFacets>
|
||
find_conflicts(
|
||
Cell_handle d,
|
||
const Conflict_test &tester,
|
||
Triple<OutputIteratorBoundaryFacets,
|
||
OutputIteratorCells,
|
||
OutputIteratorInternalFacets> it
|
||
, bool *p_could_lock_zone = 0
|
||
, const Facet *p_this_facet_must_be_in_the_cz = 0
|
||
, bool *p_the_facet_is_not_in_its_cz = 0
|
||
) const
|
||
{
|
||
CGAL_triangulation_precondition( dimension()>=2 );
|
||
CGAL_triangulation_precondition( tester(d) );
|
||
|
||
if (p_the_facet_is_not_in_its_cz)
|
||
*p_the_facet_is_not_in_its_cz = true;
|
||
|
||
if (p_could_lock_zone)
|
||
*p_could_lock_zone = true;
|
||
|
||
std::stack<Cell_handle> cell_stack;
|
||
|
||
// CJTODO: useless?
|
||
if (p_could_lock_zone)
|
||
{
|
||
if (!try_lock_element(d))
|
||
{
|
||
*p_could_lock_zone = false;
|
||
return it;
|
||
}
|
||
}
|
||
|
||
// To store the boundary cells, in case we need to rollback
|
||
// CJTODO: make it static TLS (for performance)
|
||
// CJTODO: useless car d<>j<EFBFBD> fait dans Regular_tri_3::find_conflicts?
|
||
|
||
cell_stack.push(d);
|
||
d->tds_data().mark_in_conflict();
|
||
|
||
*it.second++ = d;
|
||
|
||
do {
|
||
Cell_handle c = cell_stack.top();
|
||
cell_stack.pop();
|
||
|
||
// For each neighbor cell
|
||
for (int i=0; i<dimension()+1; ++i) {
|
||
Cell_handle test = c->neighbor(i);
|
||
|
||
// "test" is either in the conflict zone,
|
||
// either facet-adjacent to the CZ
|
||
// IF WE WANT TO LOCK ADJACENT CELLS
|
||
#ifdef CGAL_MESH_3_CONCURRENT_REFINEMENT_LOCK_ADJ_CELLS
|
||
if (p_could_lock_zone)
|
||
{
|
||
if (!try_lock_element(test))
|
||
{
|
||
*p_could_lock_zone = false;
|
||
return it;
|
||
}
|
||
}
|
||
#endif // CGAL_MESH_3_CONCURRENT_REFINEMENT_LOCK_ADJ_CELLS
|
||
|
||
if (test->tds_data().is_in_conflict()) {
|
||
|
||
Facet f(c, i); // Internal facet.
|
||
// Is it the facet where're looking for?
|
||
if (p_this_facet_must_be_in_the_cz && p_the_facet_is_not_in_its_cz
|
||
&& f == *p_this_facet_must_be_in_the_cz)
|
||
{
|
||
*p_the_facet_is_not_in_its_cz = false;
|
||
}
|
||
if (c < test)
|
||
{
|
||
*it.third++ = f;
|
||
}
|
||
continue; // test was already in conflict.
|
||
}
|
||
if (test->tds_data().is_clear()) {
|
||
if (tester(test)) {
|
||
|
||
// "test" is in the conflict zone
|
||
// IF WE DO NOT WANT TO LOCK ADJACENT CELLS
|
||
#if !defined(CGAL_MESH_3_CONCURRENT_REFINEMENT_LOCK_ADJ_CELLS)
|
||
if (p_could_lock_zone)
|
||
{
|
||
if (!try_lock_element(test))
|
||
{
|
||
*p_could_lock_zone = false;
|
||
// Unlock
|
||
return it;
|
||
}
|
||
}
|
||
#endif // !CGAL_MESH_3_CONCURRENT_REFINEMENT_LOCK_ADJ_CELLS
|
||
|
||
|
||
Facet f(c, i); // Internal facet.
|
||
// Is it the facet where're looking for?
|
||
if (p_this_facet_must_be_in_the_cz && p_the_facet_is_not_in_its_cz
|
||
&& f == *p_this_facet_must_be_in_the_cz)
|
||
{
|
||
*p_the_facet_is_not_in_its_cz = false;
|
||
}
|
||
|
||
if (c < test)
|
||
{
|
||
*it.third++ = f;
|
||
}
|
||
|
||
cell_stack.push(test);
|
||
test->tds_data().mark_in_conflict();
|
||
*it.second++ = test;
|
||
continue;
|
||
}
|
||
|
||
test->tds_data().mark_on_boundary();
|
||
}
|
||
|
||
Facet f(c, i); // Boundary facet.
|
||
// Is it the facet where're looking for?
|
||
if (p_this_facet_must_be_in_the_cz
|
||
&& p_the_facet_is_not_in_its_cz
|
||
&&
|
||
(mirror_facet(f) == *p_this_facet_must_be_in_the_cz
|
||
|| f == *p_this_facet_must_be_in_the_cz) )
|
||
{
|
||
*p_the_facet_is_not_in_its_cz = false;
|
||
}
|
||
|
||
*it.first++ = f;
|
||
}
|
||
} while (!cell_stack.empty());
|
||
return it;
|
||
}
|
||
|
||
// This one takes a function object to recursively determine the cells in
|
||
// conflict, then calls _tds._insert_in_hole().
|
||
template < class Conflict_test >
|
||
Vertex_handle
|
||
insert_conflict(Cell_handle c, const Conflict_test &tester)
|
||
{
|
||
CGAL_triangulation_precondition( dimension() >= 2 );
|
||
CGAL_triangulation_precondition( c != Cell_handle() );
|
||
CGAL_triangulation_precondition( tester(c) );
|
||
|
||
std::vector<Cell_handle> cells;
|
||
cells.reserve(32);
|
||
|
||
Facet facet;
|
||
|
||
// Find the cells in conflict
|
||
switch (dimension()) {
|
||
case 3:
|
||
find_conflicts(c, tester, make_triple(Oneset_iterator<Facet>(facet),
|
||
std::back_inserter(cells),
|
||
Emptyset_iterator()));
|
||
break;
|
||
case 2:
|
||
find_conflicts(c, tester, make_triple(Oneset_iterator<Facet>(facet),
|
||
std::back_inserter(cells),
|
||
Emptyset_iterator()));
|
||
}
|
||
// Create the new cells and delete the old.
|
||
return _tds._insert_in_hole(cells.begin(), cells.end(),
|
||
facet.first, facet.second);
|
||
}
|
||
|
||
private:
|
||
// Here are the conflit tester function objects passed to
|
||
// insert_conflict_[23]() by insert_outside_convex_hull().
|
||
class Conflict_tester_outside_convex_hull_3
|
||
{
|
||
const Point &p;
|
||
const Self *t;
|
||
|
||
public:
|
||
|
||
Conflict_tester_outside_convex_hull_3(const Point &pt, const Self *tr)
|
||
: p(pt), t(tr) {}
|
||
|
||
bool operator()(const Cell_handle c) const
|
||
{
|
||
Locate_type loc;
|
||
int i, j;
|
||
return t->side_of_cell( p, c, loc, i, j ) == ON_BOUNDED_SIDE;
|
||
}
|
||
};
|
||
|
||
class Conflict_tester_outside_convex_hull_2
|
||
{
|
||
const Point &p;
|
||
const Self *t;
|
||
|
||
public:
|
||
|
||
Conflict_tester_outside_convex_hull_2(const Point &pt, const Self *tr)
|
||
: p(pt), t(tr) {}
|
||
|
||
bool operator()(const Cell_handle c) const
|
||
{
|
||
Locate_type loc;
|
||
int i, j;
|
||
return t->side_of_facet( p, c, loc, i, j ) == ON_BOUNDED_SIDE;
|
||
}
|
||
};
|
||
|
||
protected:
|
||
|
||
// no point being private, we might need to test
|
||
// whether a displacement decreases dimension on
|
||
// others inherited triangulations
|
||
bool test_dim_down(Vertex_handle v) const;
|
||
|
||
// REMOVAL
|
||
template < class VertexRemover >
|
||
void remove(Vertex_handle v, VertexRemover &remover);
|
||
|
||
template < class VertexRemover, class OutputItCells >
|
||
void remove_and_give_new_cells(Vertex_handle v, VertexRemover &remover,
|
||
OutputItCells fit);
|
||
|
||
// This function removes a batch of points at once.
|
||
// If points are grouped in cluster, the performance is increased
|
||
// compared to removing one by one.
|
||
// For now, this function is only guaranteed for Delaunay triangulations (or Regular as Delaunay).
|
||
// By doing these kind of remove followed by inserting the cluster,
|
||
// we achieve fast relocations for a batch of points (in a Delaunay triangulation).
|
||
template < class InputIterator, class VertexRemover >
|
||
size_type remove(InputIterator first, InputIterator beyond,
|
||
VertexRemover &remover);
|
||
enum REMOVE_VERTEX_STATE {CLEAR, TO_REMOVE, PROCESSED, EXTREMITY};
|
||
|
||
// MOVE
|
||
template < class VertexRemover, class VertexInserter >
|
||
Vertex_handle move_if_no_collision(Vertex_handle v, const Point &p,
|
||
VertexRemover &remover,
|
||
VertexInserter &inserter);
|
||
|
||
template < class VertexRemover, class VertexInserter >
|
||
Vertex_handle move(Vertex_handle v, const Point &p,
|
||
VertexRemover &remover, VertexInserter &inserter);
|
||
|
||
// move and give new cells
|
||
template < class VertexRemover, class VertexInserter, class OutputItCells >
|
||
Vertex_handle move_if_no_collision_and_give_new_cells(
|
||
Vertex_handle v, const Point &p, VertexRemover &remover,
|
||
VertexInserter &inserter, OutputItCells fit);
|
||
|
||
// This is a function better suited for tds
|
||
// but because it is not required in the model of tds
|
||
// at this time, it should be implemented here.
|
||
void flip_2D(Cell_handle f, int i)
|
||
{
|
||
CGAL_triangulation_precondition( dimension()==2);
|
||
Cell_handle n = f->neighbor(i);
|
||
int ni = this->_tds.mirror_index(f,i); //ni = n->index(f);
|
||
|
||
int cwi = (i+2)%3;
|
||
int ccwi = (i+1)%3;
|
||
int cwni = (ni+2)%3;
|
||
int ccwni = (ni+1)%3;
|
||
|
||
Vertex_handle v_cw = f->vertex(cwi);
|
||
Vertex_handle v_ccw = f->vertex(ccwi);
|
||
|
||
// bl == bottom left, tr == top right
|
||
Cell_handle tr = f->neighbor(ccwi);
|
||
int tri = this->_tds.mirror_index(f,ccwi);
|
||
Cell_handle bl = n->neighbor(ccwni);
|
||
int bli = this->_tds.mirror_index(n,ccwni);
|
||
|
||
f->set_vertex(cwi, n->vertex(ni));
|
||
n->set_vertex(cwni, f->vertex(i));
|
||
|
||
// update the neighborhood relations
|
||
this->_tds.set_adjacency(f, i, bl, bli);
|
||
this->_tds.set_adjacency(f, ccwi, n, ccwni);
|
||
this->_tds.set_adjacency(n, ni, tr, tri);
|
||
|
||
if(v_cw->cell() == f) {
|
||
v_cw->set_cell(n);
|
||
}
|
||
|
||
if(v_ccw->cell() == n) {
|
||
v_ccw->set_cell(f);
|
||
}
|
||
}
|
||
|
||
template < class VertexRemover, class VertexInserter >
|
||
void restore_edges_after_decrease_dimension(Vertex_handle v,
|
||
VertexRemover &remover, VertexInserter &inserter)
|
||
{
|
||
|
||
Cell_handle fkstart = v->cell();
|
||
Cell_handle start = fkstart->neighbor(fkstart->index(v));
|
||
|
||
std::list<Edge_2D> hole;
|
||
make_hole_2D(v, hole, remover);
|
||
fill_hole_2D(hole, remover);
|
||
// make hole here will work if the link of v is a valid triangulation
|
||
// the aim here is Delaunay triangulations
|
||
// to make it more general one could have an internal function here
|
||
// to remove v without touching its handle
|
||
|
||
// This insert must be from Delaunay (or the particular trian.)
|
||
// not the basic Triangulation_3.
|
||
// Here we correct the recent triangulation (with decreased dimension) formed
|
||
// in particular here a 2D (from 3D to 2D displacement)
|
||
Vertex_handle inserted = inserter.insert(v->point(), start);
|
||
|
||
// fixing pointer
|
||
Cell_handle fc = inserted->cell(), done(fc);
|
||
std::vector<Cell_handle> faces_pt;
|
||
faces_pt.reserve(16);
|
||
do {
|
||
faces_pt.push_back(fc);
|
||
fc = fc->neighbor((fc->index(inserted) + 1)%3);
|
||
} while(fc != done);
|
||
std::size_t ss = faces_pt.size();
|
||
for(std::size_t k=0; k<ss; k++)
|
||
{
|
||
Cell_handle f = faces_pt[k];
|
||
int i = f->index(inserted);
|
||
f->set_vertex(i, v);
|
||
}
|
||
v->set_cell(inserted->cell());
|
||
|
||
tds().delete_vertex(inserted);
|
||
}
|
||
|
||
private:
|
||
typedef Facet Edge_2D;
|
||
typedef Triple<Vertex_handle,Vertex_handle,Vertex_handle> Vertex_triple;
|
||
|
||
Vertex_triple make_vertex_triple(const Facet& f) const;
|
||
void make_canonical(Vertex_triple& t) const;
|
||
|
||
template < class VertexRemover >
|
||
VertexRemover& make_hole_2D(Vertex_handle v, std::list<Edge_2D> & hole,
|
||
VertexRemover &remover);
|
||
template < class VertexRemover >
|
||
VertexRemover& make_hole_2D(Vertex_handle v, std::list<Edge_2D> & hole,
|
||
VertexRemover &remover,
|
||
std::set<Cell_handle> &cells_set);
|
||
|
||
template < class VertexRemover >
|
||
void fill_hole_2D(std::list<Edge_2D> & hole, VertexRemover &remover);
|
||
|
||
void make_hole_3D( Vertex_handle v, std::map<Vertex_triple,Facet>& outer_map,
|
||
std::vector<Cell_handle> & hole);
|
||
|
||
template < class VertexRemover >
|
||
VertexRemover& remove_dim_down(Vertex_handle v, VertexRemover &remover);
|
||
template < class VertexRemover >
|
||
VertexRemover& remove_1D(Vertex_handle v, VertexRemover &remover);
|
||
template < class VertexRemover >
|
||
VertexRemover& remove_2D(Vertex_handle v, VertexRemover &remover);
|
||
template < class VertexRemover >
|
||
VertexRemover& remove_3D(Vertex_handle v, VertexRemover &remover);
|
||
|
||
template < class VertexRemover, class OutputItCells >
|
||
VertexRemover& remove_dim_down(Vertex_handle v, VertexRemover &remover,
|
||
OutputItCells fit);
|
||
|
||
template < class VertexRemover, class OutputItCells >
|
||
VertexRemover& remove_1D(Vertex_handle v, VertexRemover &remover,
|
||
OutputItCells fit);
|
||
|
||
template < class VertexRemover, class OutputItCells >
|
||
VertexRemover& remove_2D(Vertex_handle v, VertexRemover &remover,
|
||
OutputItCells fit);
|
||
|
||
template < class VertexRemover, class OutputItCells >
|
||
VertexRemover& remove_3D(Vertex_handle v, VertexRemover &remover,
|
||
OutputItCells fit);
|
||
|
||
template < class VertexRemover, class OutputItCells >
|
||
void fill_hole_2D(std::list<Edge_2D> & hole, VertexRemover &remover,
|
||
OutputItCells fit);
|
||
|
||
// They access "Self", so need to be friend.
|
||
friend class Conflict_tester_outside_convex_hull_3;
|
||
friend class Conflict_tester_outside_convex_hull_2;
|
||
friend class Infinite_tester;
|
||
friend class Finite_vertices_iterator;
|
||
friend class Finite_cells_iterator;
|
||
|
||
// remove cluster
|
||
template < class InputIterator >
|
||
void _mark_vertices_to_remove(InputIterator first, InputIterator beyond,
|
||
std::map<Vertex_handle, REMOVE_VERTEX_STATE> &vstates) const
|
||
{
|
||
while (first != beyond) vstates[*first++] = TO_REMOVE;
|
||
}
|
||
|
||
bool _test_dim_down_cluster(
|
||
std::map<Vertex_handle, REMOVE_VERTEX_STATE> &vstates) const
|
||
// tests whether removing the cluster of vertices
|
||
// marked as "to remove", decreases the dimension of the triangulation
|
||
{
|
||
CGAL_triangulation_precondition( dimension() == 3 );
|
||
int k=0;
|
||
Vertex_handle v[4];
|
||
for (Finite_vertices_iterator fit = finite_vertices_begin();
|
||
fit != finite_vertices_end(); ++fit ) {
|
||
if(vstates[fit] == TO_REMOVE) continue;
|
||
v[k++] = fit;
|
||
if(k == 4)
|
||
{
|
||
if (!coplanar(v[0]->point(), v[1]->point(),
|
||
v[2]->point(), v[3]->point())) return false;
|
||
k--;
|
||
}
|
||
}
|
||
return k < 4;
|
||
}
|
||
|
||
template < class InputIterator, class VertexRemover >
|
||
bool
|
||
_remove_cluster_3D(InputIterator first, InputIterator beyond, VertexRemover &remover,
|
||
std::map<Vertex_handle, REMOVE_VERTEX_STATE> &vstates);
|
||
|
||
void _make_big_hole_3D(Vertex_handle v,
|
||
std::map<Vertex_triple,Facet>& outer_map,
|
||
std::vector<Cell_handle> & hole,
|
||
std::vector<Vertex_handle> & vertices,
|
||
std::map<Vertex_handle, REMOVE_VERTEX_STATE> &vstates);
|
||
|
||
public:
|
||
|
||
//TRAVERSING : ITERATORS AND CIRCULATORS
|
||
Finite_cells_iterator finite_cells_begin() const
|
||
{
|
||
if ( dimension() < 3 )
|
||
return finite_cells_end();
|
||
return CGAL::filter_iterator(cells_end(), Infinite_tester(this),
|
||
cells_begin());
|
||
}
|
||
Finite_cells_iterator finite_cells_end() const
|
||
{
|
||
return CGAL::filter_iterator(cells_end(), Infinite_tester(this));
|
||
}
|
||
|
||
Cell_iterator cells_begin() const
|
||
{
|
||
return _tds.cells_begin();
|
||
}
|
||
Cell_iterator cells_end() const
|
||
{
|
||
return _tds.cells_end();
|
||
}
|
||
|
||
All_cells_iterator all_cells_begin() const
|
||
{
|
||
return _tds.cells_begin();
|
||
}
|
||
All_cells_iterator all_cells_end() const
|
||
{
|
||
return _tds.cells_end();
|
||
}
|
||
|
||
Finite_vertices_iterator finite_vertices_begin() const
|
||
{
|
||
if ( number_of_vertices() <= 0 )
|
||
return finite_vertices_end();
|
||
return CGAL::filter_iterator(vertices_end(), Infinite_tester(this),
|
||
vertices_begin());
|
||
}
|
||
Finite_vertices_iterator finite_vertices_end() const
|
||
{
|
||
return CGAL::filter_iterator(vertices_end(), Infinite_tester(this));
|
||
}
|
||
|
||
Vertex_iterator vertices_begin() const
|
||
{
|
||
return _tds.vertices_begin();
|
||
}
|
||
Vertex_iterator vertices_end() const
|
||
{
|
||
return _tds.vertices_end();
|
||
}
|
||
|
||
All_vertices_iterator all_vertices_begin() const
|
||
{
|
||
return _tds.vertices_begin();
|
||
}
|
||
All_vertices_iterator all_vertices_end() const
|
||
{
|
||
return _tds.vertices_end();
|
||
}
|
||
|
||
Finite_edges_iterator finite_edges_begin() const
|
||
{
|
||
if ( dimension() < 1 )
|
||
return finite_edges_end();
|
||
return CGAL::filter_iterator(edges_end(), Infinite_tester(this),
|
||
edges_begin());
|
||
}
|
||
Finite_edges_iterator finite_edges_end() const
|
||
{
|
||
return CGAL::filter_iterator(edges_end(), Infinite_tester(this));
|
||
}
|
||
|
||
Edge_iterator edges_begin() const
|
||
{
|
||
return _tds.edges_begin();
|
||
}
|
||
Edge_iterator edges_end() const
|
||
{
|
||
return _tds.edges_end();
|
||
}
|
||
|
||
All_edges_iterator all_edges_begin() const
|
||
{
|
||
return _tds.edges_begin();
|
||
}
|
||
All_edges_iterator all_edges_end() const
|
||
{
|
||
return _tds.edges_end();
|
||
}
|
||
|
||
Finite_facets_iterator finite_facets_begin() const
|
||
{
|
||
if ( dimension() < 2 )
|
||
return finite_facets_end();
|
||
return CGAL::filter_iterator(facets_end(), Infinite_tester(this),
|
||
facets_begin());
|
||
}
|
||
Finite_facets_iterator finite_facets_end() const
|
||
{
|
||
return CGAL::filter_iterator(facets_end(), Infinite_tester(this));
|
||
}
|
||
|
||
Facet_iterator facets_begin() const
|
||
{
|
||
return _tds.facets_begin();
|
||
}
|
||
Facet_iterator facets_end() const
|
||
{
|
||
return _tds.facets_end();
|
||
}
|
||
|
||
All_facets_iterator all_facets_begin() const
|
||
{
|
||
return _tds.facets_begin();
|
||
}
|
||
All_facets_iterator all_facets_end() const
|
||
{
|
||
return _tds.facets_end();
|
||
}
|
||
|
||
Point_iterator points_begin() const
|
||
{
|
||
return Point_iterator(finite_vertices_begin());
|
||
}
|
||
Point_iterator points_end() const
|
||
{
|
||
return Point_iterator(finite_vertices_end());
|
||
}
|
||
|
||
// cells around an edge
|
||
Cell_circulator incident_cells(const Edge & e) const
|
||
{
|
||
return _tds.incident_cells(e);
|
||
}
|
||
Cell_circulator incident_cells(Cell_handle c, int i, int j) const
|
||
{
|
||
return _tds.incident_cells(c, i, j);
|
||
}
|
||
Cell_circulator incident_cells(const Edge & e, Cell_handle start) const
|
||
{
|
||
return _tds.incident_cells(e, start);
|
||
}
|
||
Cell_circulator incident_cells(Cell_handle c, int i, int j,
|
||
Cell_handle start) const
|
||
{
|
||
return _tds.incident_cells(c, i, j, start);
|
||
}
|
||
|
||
// facets around an edge
|
||
Facet_circulator incident_facets(const Edge & e) const
|
||
{
|
||
return _tds.incident_facets(e);
|
||
}
|
||
Facet_circulator incident_facets(Cell_handle c, int i, int j) const
|
||
{
|
||
return _tds.incident_facets(c, i, j);
|
||
}
|
||
Facet_circulator incident_facets(const Edge & e, const Facet & start) const
|
||
{
|
||
return _tds.incident_facets(e, start);
|
||
}
|
||
Facet_circulator incident_facets(Cell_handle c, int i, int j,
|
||
const Facet & start) const
|
||
{
|
||
return _tds.incident_facets(c, i, j, start);
|
||
}
|
||
Facet_circulator incident_facets(const Edge & e,
|
||
Cell_handle start, int f) const
|
||
{
|
||
return _tds.incident_facets(e, start, f);
|
||
}
|
||
Facet_circulator incident_facets(Cell_handle c, int i, int j,
|
||
Cell_handle start, int f) const
|
||
{
|
||
return _tds.incident_facets(c, i, j, start, f);
|
||
}
|
||
|
||
// around a vertex
|
||
class Finite_filter {
|
||
const Self* t;
|
||
public:
|
||
Finite_filter(const Self* _t): t(_t) {}
|
||
template<class T>
|
||
bool operator() (const T& e) const {
|
||
return t->is_infinite(e);
|
||
}
|
||
};
|
||
|
||
class Finite_filter_2D {
|
||
const Self* t;
|
||
public:
|
||
Finite_filter_2D(const Self* _t): t(_t) {}
|
||
|
||
template<class T>
|
||
bool operator() (const T& e) const {
|
||
return t->is_infinite(e);
|
||
}
|
||
|
||
bool operator() (const Cell_handle c) {
|
||
return t->is_infinite(c, 3);
|
||
}
|
||
};
|
||
|
||
template <class OutputIterator>
|
||
OutputIterator
|
||
incident_cells(Vertex_handle v, OutputIterator cells) const
|
||
{
|
||
return _tds.incident_cells(v, cells);
|
||
}
|
||
|
||
template <class OutputIterator>
|
||
OutputIterator
|
||
finite_incident_cells(Vertex_handle v, OutputIterator cells) const
|
||
{
|
||
if(dimension() == 2)
|
||
return _tds.incident_cells(v, cells, Finite_filter_2D(this));
|
||
return _tds.incident_cells(v, cells, Finite_filter(this));
|
||
}
|
||
|
||
template <class OutputIterator>
|
||
OutputIterator
|
||
incident_facets(Vertex_handle v, OutputIterator facets) const
|
||
{
|
||
return _tds.incident_facets(v, facets);
|
||
}
|
||
|
||
template <class OutputIterator>
|
||
OutputIterator
|
||
finite_incident_facets(Vertex_handle v, OutputIterator facets) const
|
||
{
|
||
return _tds.incident_facets(v, facets, Finite_filter(this));
|
||
}
|
||
|
||
// old name (up to CGAL 3.4)
|
||
// kept for backwards compatibility but not documented
|
||
template <class OutputIterator>
|
||
OutputIterator
|
||
incident_vertices(Vertex_handle v, OutputIterator vertices) const
|
||
{
|
||
return _tds.adjacent_vertices(v, vertices);
|
||
}
|
||
|
||
// correct name
|
||
template <class OutputIterator>
|
||
OutputIterator
|
||
adjacent_vertices(Vertex_handle v, OutputIterator vertices) const
|
||
{
|
||
return _tds.adjacent_vertices(v, vertices);
|
||
}
|
||
|
||
// old name (up to CGAL 3.4)
|
||
// kept for backwards compatibility but not documented
|
||
template <class OutputIterator>
|
||
OutputIterator
|
||
finite_incident_vertices(Vertex_handle v, OutputIterator vertices) const
|
||
{
|
||
return _tds.adjacent_vertices(v, vertices, Finite_filter(this));
|
||
}
|
||
|
||
// correct name
|
||
template <class OutputIterator>
|
||
OutputIterator
|
||
finite_adjacent_vertices(Vertex_handle v, OutputIterator vertices) const
|
||
{
|
||
return _tds.adjacent_vertices(v, vertices, Finite_filter(this));
|
||
}
|
||
|
||
template <class OutputIterator>
|
||
OutputIterator
|
||
incident_edges(Vertex_handle v, OutputIterator edges) const
|
||
{
|
||
return _tds.incident_edges(v, edges);
|
||
}
|
||
|
||
template <class OutputIterator>
|
||
OutputIterator
|
||
finite_incident_edges(Vertex_handle v, OutputIterator edges) const
|
||
{
|
||
return _tds.incident_edges(v, edges, Finite_filter(this));
|
||
}
|
||
|
||
size_type degree(Vertex_handle v) const
|
||
{
|
||
return _tds.degree(v);
|
||
}
|
||
|
||
|
||
|
||
// CHECKING
|
||
bool is_valid(bool verbose = false, int level = 0) const;
|
||
|
||
bool is_valid(Cell_handle c, bool verbose = false, int level = 0) const;
|
||
|
||
bool is_valid_finite(Cell_handle c, bool verbose = false, int level=0) const;
|
||
};
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
std::istream &
|
||
operator>> (std::istream& is, Triangulation_3<GT, Tds, Upm> &tr)
|
||
// reads
|
||
// the dimension
|
||
// the number of finite vertices
|
||
// the non combinatorial information on vertices (point, etc)
|
||
// the number of cells
|
||
// the cells by the indices of their vertices in the preceding list
|
||
// of vertices, plus the non combinatorial information on each cell
|
||
// the neighbors of each cell by their index in the preceding list of cells
|
||
// when dimension < 3 : the same with faces of maximal dimension
|
||
{
|
||
typedef Triangulation_3<GT, Tds> Triangulation;
|
||
typedef typename Triangulation::Vertex_handle Vertex_handle;
|
||
typedef typename Triangulation::Cell_handle Cell_handle;
|
||
|
||
tr._tds.clear(); // infinite vertex deleted
|
||
tr.infinite = tr._tds.create_vertex();
|
||
|
||
std::size_t n;
|
||
int d;
|
||
if(is_ascii(is))
|
||
is >> d >> n;
|
||
else {
|
||
read(is, d);
|
||
read(is, n);
|
||
}
|
||
if(!is) return is;
|
||
tr._tds.set_dimension(d);
|
||
|
||
std::map< std::size_t, Vertex_handle > V;
|
||
V[0] = tr.infinite_vertex();
|
||
// the infinite vertex is numbered 0
|
||
|
||
for (std::size_t i=1; i <= n; i++) {
|
||
V[i] = tr._tds.create_vertex();
|
||
if(!(is >> *V[i])) return is;
|
||
}
|
||
|
||
std::map< std::size_t, Cell_handle > C;
|
||
|
||
std::size_t m;
|
||
tr._tds.read_cells(is, V, m, C);
|
||
|
||
for (std::size_t j=0 ; j < m; j++)
|
||
if(!(is >> *(C[j]))) return is;
|
||
|
||
CGAL_triangulation_assertion( tr.is_valid(false) );
|
||
return is;
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
std::ostream &
|
||
operator<< (std::ostream& os, const Triangulation_3<GT, Tds, Upm> &tr)
|
||
// writes :
|
||
// the dimension
|
||
// the number of finite vertices
|
||
// the non combinatorial information on vertices (point, etc)
|
||
// the number of cells
|
||
// the cells by the indices of their vertices in the preceding list
|
||
// of vertices, plus the non combinatorial information on each cell
|
||
// the neighbors of each cell by their index in the preceding list of cells
|
||
// when dimension < 3 : the same with faces of maximal dimension
|
||
{
|
||
typedef Triangulation_3<GT, Tds> Triangulation;
|
||
typedef typename Triangulation::size_type size_type;
|
||
typedef typename Triangulation::Vertex_handle Vertex_handle;
|
||
typedef typename Triangulation::Vertex_iterator Vertex_iterator;
|
||
typedef typename Triangulation::Cell_iterator Cell_iterator;
|
||
typedef typename Triangulation::Edge_iterator Edge_iterator;
|
||
typedef typename Triangulation::Facet_iterator Facet_iterator;
|
||
|
||
// outputs dimension and number of vertices
|
||
size_type n = tr.number_of_vertices();
|
||
if (is_ascii(os))
|
||
os << tr.dimension() << std::endl << n << std::endl;
|
||
else
|
||
{
|
||
write(os, tr.dimension());
|
||
write(os, n);
|
||
}
|
||
|
||
if (n == 0)
|
||
return os;
|
||
|
||
std::vector<Vertex_handle> TV(n+1);
|
||
size_type i = 0;
|
||
|
||
// write the vertices
|
||
|
||
for (Vertex_iterator it = tr.vertices_begin(), end = tr.vertices_end();
|
||
it != end; ++it)
|
||
TV[i++] = it;
|
||
|
||
CGAL_triangulation_assertion( i == n+1 );
|
||
CGAL_triangulation_assertion( tr.is_infinite(TV[0]) );
|
||
|
||
Unique_hash_map<Vertex_handle, std::size_t > V;
|
||
|
||
V[tr.infinite_vertex()] = 0;
|
||
for (i=1; i <= n; i++) {
|
||
os << *TV[i];
|
||
V[TV[i]] = i;
|
||
if (is_ascii(os))
|
||
os << std::endl;
|
||
}
|
||
|
||
// asks the tds for the combinatorial information
|
||
tr.tds().print_cells(os, V);
|
||
|
||
|
||
// write the non combinatorial information on the cells
|
||
// using the << operator of Cell
|
||
// works because the iterator of the tds traverses the cells in the
|
||
// same order as the iterator of the triangulation
|
||
switch ( tr.dimension() ) {
|
||
case 3:
|
||
{
|
||
for(Cell_iterator it = tr.cells_begin(), end = tr.cells_end(); it != end; ++it) {
|
||
os << *it; // other information
|
||
if(is_ascii(os))
|
||
os << std::endl;
|
||
}
|
||
break;
|
||
}
|
||
case 2:
|
||
{
|
||
for(Facet_iterator it = tr.facets_begin(), end = tr.facets_end(); it != end; ++it) {
|
||
os << *((*it).first); // other information
|
||
if(is_ascii(os))
|
||
os << std::endl;
|
||
}
|
||
break;
|
||
}
|
||
case 1:
|
||
{
|
||
for(Edge_iterator it = tr.edges_begin(), end = tr.edges_end(); it != end; ++it) {
|
||
os << *((*it).first); // other information
|
||
if(is_ascii(os))
|
||
os << std::endl;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
return os ;
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
typename Triangulation_3<GT,Tds,Upm>::size_type
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
number_of_finite_cells() const
|
||
{
|
||
if ( dimension() < 3 ) return 0;
|
||
return std::distance(finite_cells_begin(), finite_cells_end());
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
typename Triangulation_3<GT,Tds,Upm>::size_type
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
number_of_cells() const
|
||
{
|
||
return _tds.number_of_cells();
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
typename Triangulation_3<GT,Tds,Upm>::size_type
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
number_of_finite_facets() const
|
||
{
|
||
if ( dimension() < 2 ) return 0;
|
||
return std::distance(finite_facets_begin(), finite_facets_end());
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
typename Triangulation_3<GT,Tds,Upm>::size_type
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
number_of_facets() const
|
||
{
|
||
return _tds.number_of_facets();
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
typename Triangulation_3<GT,Tds,Upm>::size_type
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
number_of_finite_edges() const
|
||
{
|
||
if ( dimension() < 1 ) return 0;
|
||
return std::distance(finite_edges_begin(), finite_edges_end());
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
typename Triangulation_3<GT,Tds,Upm>::size_type
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
number_of_edges() const
|
||
{
|
||
return _tds.number_of_edges();
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
typename Triangulation_3<GT,Tds,Upm>::Triangle
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
triangle(const Cell_handle c, int i) const
|
||
{
|
||
CGAL_triangulation_precondition( dimension() == 2 || dimension() == 3 );
|
||
CGAL_triangulation_precondition( (dimension() == 2 && i == 3)
|
||
|| (dimension() == 3 && i >= 0 && i <= 3) );
|
||
CGAL_triangulation_precondition( ! is_infinite(Facet(c, i)) );
|
||
if ( (i&1)==0 )
|
||
return construct_triangle(c->vertex( (i+2)&3 )->point(),
|
||
c->vertex( (i+1)&3 )->point(),
|
||
c->vertex( (i+3)&3 )->point());
|
||
return construct_triangle(c->vertex( (i+1)&3 )->point(),
|
||
c->vertex( (i+2)&3 )->point(),
|
||
c->vertex( (i+3)&3 )->point());
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
typename Triangulation_3<GT,Tds,Upm>::Segment
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
segment(const Cell_handle c, int i, int j) const
|
||
{
|
||
CGAL_triangulation_precondition( i != j );
|
||
CGAL_triangulation_precondition( dimension() >= 1 && dimension() <= 3 );
|
||
CGAL_triangulation_precondition( i >= 0 && i <= dimension()
|
||
&& j >= 0 && j <= dimension() );
|
||
CGAL_triangulation_precondition( ! is_infinite(Edge(c, i, j)) );
|
||
return construct_segment( c->vertex(i)->point(), c->vertex(j)->point() );
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
inline
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
is_infinite(const Cell_handle c, int i) const
|
||
{
|
||
CGAL_triangulation_precondition( dimension() == 2 || dimension() == 3 );
|
||
CGAL_triangulation_precondition( (dimension() == 2 && i == 3)
|
||
|| (dimension() == 3 && i >= 0 && i <= 3) );
|
||
return is_infinite(c->vertex(i<=0 ? 1 : 0)) ||
|
||
is_infinite(c->vertex(i<=1 ? 2 : 1)) ||
|
||
is_infinite(c->vertex(i<=2 ? 3 : 2));
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
inline
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
is_infinite(const Cell_handle c, int i, int j) const
|
||
{
|
||
CGAL_triangulation_precondition( i != j );
|
||
CGAL_triangulation_precondition( dimension() >= 1 && dimension() <= 3 );
|
||
CGAL_triangulation_precondition(
|
||
i >= 0 && i <= dimension() && j >= 0 && j <= dimension() );
|
||
return is_infinite( c->vertex(i) ) || is_infinite( c->vertex(j) );
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
is_vertex(const Point & p, Vertex_handle & v) const
|
||
{
|
||
Locate_type lt;
|
||
int li, lj;
|
||
Cell_handle c = locate( p, lt, li, lj );
|
||
if ( lt != VERTEX )
|
||
return false;
|
||
v = c->vertex(li);
|
||
return true;
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
inline
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
is_vertex(Vertex_handle v) const
|
||
{
|
||
return _tds.is_vertex(v);
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
is_edge(Vertex_handle u, Vertex_handle v,
|
||
Cell_handle & c, int & i, int & j) const
|
||
{
|
||
return _tds.is_edge(u, v, c, i, j);
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
is_facet(Vertex_handle u, Vertex_handle v, Vertex_handle w,
|
||
Cell_handle & c, int & i, int & j, int & k) const
|
||
{
|
||
return _tds.is_facet(u, v, w, c, i, j, k);
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
inline
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
is_cell(Cell_handle c) const
|
||
{
|
||
return _tds.is_cell(c);
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
is_cell(Vertex_handle u, Vertex_handle v,
|
||
Vertex_handle w, Vertex_handle t,
|
||
Cell_handle & c, int & i, int & j, int & k, int & l) const
|
||
{
|
||
return _tds.is_cell(u, v, w, t, c, i, j, k, l);
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
is_cell(Vertex_handle u, Vertex_handle v,
|
||
Vertex_handle w, Vertex_handle t,
|
||
Cell_handle & c) const
|
||
{
|
||
int i,j,k,l;
|
||
return _tds.is_cell(u, v, w, t, c, i, j, k, l);
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
inline
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
has_vertex(const Facet & f, Vertex_handle v, int & j) const
|
||
{
|
||
return _tds.has_vertex(f.first, f.second, v, j);
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
inline
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
has_vertex(Cell_handle c, int i, Vertex_handle v, int & j) const
|
||
{
|
||
return _tds.has_vertex(c, i, v, j);
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
inline
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
has_vertex(const Facet & f, Vertex_handle v) const
|
||
{
|
||
return _tds.has_vertex(f.first, f.second, v);
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
inline
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
has_vertex(Cell_handle c, int i, Vertex_handle v) const
|
||
{
|
||
return _tds.has_vertex(c, i, v);
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
inline
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
are_equal(Cell_handle c, int i, Cell_handle n, int j) const
|
||
{
|
||
return _tds.are_equal(c, i, n, j);
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
inline
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
are_equal(const Facet & f, const Facet & g) const
|
||
{
|
||
return _tds.are_equal(f.first, f.second, g.first, g.second);
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
inline
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
are_equal(const Facet & f, Cell_handle n, int j) const
|
||
{
|
||
return _tds.are_equal(f.first, f.second, n, j);
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
typename Triangulation_3<GT,Tds,Upm>::Cell_handle
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
#ifdef CGAL_NO_STRUCTURAL_FILTERING
|
||
locate(const Point & p, Locate_type & lt, int & li, int & lj,
|
||
Cell_handle start, bool *p_could_lock_zone) const
|
||
#else
|
||
exact_locate(const Point & p, Locate_type & lt, int & li, int & lj,
|
||
Cell_handle start, bool *p_could_lock_zone) const
|
||
#endif
|
||
// returns the (finite or infinite) cell p lies in
|
||
// starts at cell "start"
|
||
// if lt == OUTSIDE_CONVEX_HULL, li is the
|
||
// index of a facet separating p from the rest of the triangulation
|
||
// in dimension 2 :
|
||
// returns a facet (Cell_handle,li) if lt == FACET
|
||
// returns an edge (Cell_handle,li,lj) if lt == EDGE
|
||
// returns a vertex (Cell_handle,li) if lt == VERTEX
|
||
// if lt == OUTSIDE_CONVEX_HULL, li, lj give the edge of c
|
||
// separating p from the rest of the triangulation
|
||
// lt = OUTSIDE_AFFINE_HULL if p is not coplanar with the triangulation
|
||
{
|
||
CGAL_triangulation_expensive_assertion(start == Cell_handle() || tds().is_simplex(start) );
|
||
|
||
if (p_could_lock_zone)
|
||
*p_could_lock_zone = true;
|
||
|
||
if ( dimension() >= 1 ) {
|
||
// Make sure we continue from here with a finite cell.
|
||
if ( start == Cell_handle() )
|
||
start = infinite_cell();
|
||
|
||
int ind_inf;
|
||
if ( start->has_vertex(infinite, ind_inf) )
|
||
start = start->neighbor(ind_inf);
|
||
}
|
||
|
||
boost::rand48 rng;
|
||
|
||
switch (dimension()) {
|
||
case 3:
|
||
{
|
||
CGAL_triangulation_precondition( start != Cell_handle() );
|
||
CGAL_triangulation_precondition( ! start->has_vertex(infinite) );
|
||
|
||
// We implement the remembering visibility/stochastic walk.
|
||
|
||
// Remembers the previous cell to avoid useless orientation tests.
|
||
Cell_handle previous = Cell_handle();
|
||
Cell_handle c = start;
|
||
|
||
#ifdef CGAL_MESH_3_LOCKING_STRATEGY_SIMPLE_GRID_LOCKING
|
||
if (p_could_lock_zone)
|
||
{
|
||
// CJTODO: useless? already locked buy Mesher_level?
|
||
//c->lock(); // WARNING: not atomic! => DEADLOCKS?
|
||
if (!try_lock_element(c))
|
||
{
|
||
*p_could_lock_zone = false;
|
||
return Cell_handle();
|
||
}
|
||
}
|
||
#endif
|
||
|
||
// Stores the results of the 4 orientation tests. It will be used
|
||
// at the end to decide if p lies on a face/edge/vertex/interior.
|
||
Orientation o[4];
|
||
|
||
boost::uniform_smallint<> four(0, 3);
|
||
boost::variate_generator<boost::rand48&, boost::uniform_smallint<> > die4(rng, four);
|
||
|
||
// Now treat the cell c.
|
||
bool try_next_cell = true;
|
||
while(try_next_cell)
|
||
{
|
||
try_next_cell = false;
|
||
// We know that the 4 vertices of c are positively oriented.
|
||
// So, in order to test if p is seen outside from one of c's facets,
|
||
// we just replace the corresponding point by p in the orientation
|
||
// test. We do this using the array below.
|
||
const Point* pts[4] = { &(c->vertex(0)->point()),
|
||
&(c->vertex(1)->point()),
|
||
&(c->vertex(2)->point()),
|
||
&(c->vertex(3)->point()) };
|
||
|
||
// For the remembering stochastic walk,
|
||
// we need to start trying with a random index :
|
||
int i = die4();
|
||
// For the remembering visibility walk (Delaunay and Regular only), we don't :
|
||
// int i = 0;
|
||
|
||
bool stop = false;
|
||
// for each vertex
|
||
for (int j=0; !try_next_cell && j != 4; ++j, i = (i+1)&3)
|
||
{
|
||
Cell_handle next = c->neighbor(i);
|
||
|
||
if (previous == next)
|
||
{
|
||
o[i] = POSITIVE;
|
||
}
|
||
else
|
||
{
|
||
// We temporarily put p at i's place in pts.
|
||
const Point* backup = pts[i];
|
||
pts[i] = &p;
|
||
o[i] = orientation(*pts[0], *pts[1], *pts[2], *pts[3]);
|
||
if ( o[i] != NEGATIVE )
|
||
{
|
||
pts[i] = backup;
|
||
}
|
||
else
|
||
{
|
||
if ( next->has_vertex(infinite, li) )
|
||
{
|
||
// We are outside the convex hull.
|
||
lt = OUTSIDE_CONVEX_HULL;
|
||
return next;
|
||
}
|
||
previous = c;
|
||
c = next;
|
||
#ifdef CGAL_MESH_3_LOCKING_STRATEGY_SIMPLE_GRID_LOCKING
|
||
if (p_could_lock_zone)
|
||
{
|
||
//previous->unlock(); // DON'T do that, "c" may be in
|
||
// the same locking cell as "previous"
|
||
//c->lock(); // WARNING: not atomic! => DEADLOCKS?
|
||
if (!try_lock_element(c))
|
||
{
|
||
*p_could_lock_zone = false;
|
||
return Cell_handle();
|
||
}
|
||
}
|
||
#endif
|
||
try_next_cell = true;
|
||
}
|
||
}
|
||
} // next vertex
|
||
} // next cell
|
||
|
||
// now p is in c or on its boundary
|
||
int sum = ( o[0] == COPLANAR )
|
||
+ ( o[1] == COPLANAR )
|
||
+ ( o[2] == COPLANAR )
|
||
+ ( o[3] == COPLANAR );
|
||
switch (sum) {
|
||
case 0:
|
||
{
|
||
lt = CELL;
|
||
break;
|
||
}
|
||
case 1:
|
||
{
|
||
lt = FACET;
|
||
li = ( o[0] == COPLANAR ) ? 0 :
|
||
( o[1] == COPLANAR ) ? 1 :
|
||
( o[2] == COPLANAR ) ? 2 : 3;
|
||
break;
|
||
}
|
||
case 2:
|
||
{
|
||
lt = EDGE;
|
||
li = ( o[0] != COPLANAR ) ? 0 :
|
||
( o[1] != COPLANAR ) ? 1 : 2;
|
||
lj = ( o[li+1] != COPLANAR ) ? li+1 :
|
||
( o[li+2] != COPLANAR ) ? li+2 : li+3;
|
||
CGAL_triangulation_assertion(collinear( p,
|
||
c->vertex( li )->point(),
|
||
c->vertex( lj )->point()));
|
||
break;
|
||
}
|
||
case 3:
|
||
{
|
||
lt = VERTEX;
|
||
li = ( o[0] != COPLANAR ) ? 0 :
|
||
( o[1] != COPLANAR ) ? 1 :
|
||
( o[2] != COPLANAR ) ? 2 : 3;
|
||
break;
|
||
}
|
||
}
|
||
return c;
|
||
}
|
||
|
||
case 2:
|
||
{
|
||
CGAL_triangulation_precondition( start != Cell_handle() );
|
||
CGAL_triangulation_precondition( ! start->has_vertex(infinite) );
|
||
Cell_handle c = start;
|
||
|
||
boost::uniform_smallint<> three(0, 2);
|
||
boost::variate_generator<boost::rand48&, boost::uniform_smallint<> > die3(rng, three);
|
||
|
||
//first tests whether p is coplanar with the current triangulation
|
||
if ( orientation( c->vertex(0)->point(),
|
||
c->vertex(1)->point(),
|
||
c->vertex(2)->point(),
|
||
p ) != DEGENERATE ) {
|
||
lt = OUTSIDE_AFFINE_HULL;
|
||
li = 3; // only one facet in dimension 2
|
||
return c;
|
||
}
|
||
// if p is coplanar, location in the triangulation
|
||
// only the facet numbered 3 exists in each cell
|
||
while (1) {
|
||
int inf;
|
||
if ( c->has_vertex(infinite,inf) ) {
|
||
// c must contain p in its interior
|
||
lt = OUTSIDE_CONVEX_HULL;
|
||
li = cw(inf);
|
||
lj = ccw(inf);
|
||
return c;
|
||
}
|
||
|
||
// else c is finite
|
||
// we test its edges in a random order until we find a
|
||
// neighbor to go further
|
||
int i = die3();
|
||
const Point & p0 = c->vertex( i )->point();
|
||
const Point & p1 = c->vertex( ccw(i) )->point();
|
||
const Point & p2 = c->vertex( cw(i) )->point();
|
||
Orientation o[3];
|
||
CGAL_triangulation_assertion(coplanar_orientation(p0,p1,p2)==POSITIVE);
|
||
o[0] = coplanar_orientation(p0,p1,p);
|
||
if ( o[0] == NEGATIVE ) {
|
||
c = c->neighbor( cw(i) );
|
||
continue;
|
||
}
|
||
o[1] = coplanar_orientation(p1,p2,p);
|
||
if ( o[1] == NEGATIVE ) {
|
||
c = c->neighbor( i );
|
||
continue;
|
||
}
|
||
o[2] = coplanar_orientation(p2,p0,p);
|
||
if ( o[2] == NEGATIVE ) {
|
||
c = c->neighbor( ccw(i) );
|
||
continue;
|
||
}
|
||
|
||
// now p is in c or on its boundary
|
||
int sum = ( o[0] == COLLINEAR )
|
||
+ ( o[1] == COLLINEAR )
|
||
+ ( o[2] == COLLINEAR );
|
||
switch (sum) {
|
||
case 0:
|
||
{
|
||
lt = FACET;
|
||
li = 3; // useless ?
|
||
break;
|
||
}
|
||
case 1:
|
||
{
|
||
lt = EDGE;
|
||
li = ( o[0] == COLLINEAR ) ? i :
|
||
( o[1] == COLLINEAR ) ? ccw(i) :
|
||
cw(i);
|
||
lj = ccw(li);
|
||
break;
|
||
}
|
||
case 2:
|
||
{
|
||
lt = VERTEX;
|
||
li = ( o[0] != COLLINEAR ) ? cw(i) :
|
||
( o[1] != COLLINEAR ) ? i :
|
||
ccw(i);
|
||
break;
|
||
}
|
||
}
|
||
return c;
|
||
}
|
||
}
|
||
case 1:
|
||
{
|
||
CGAL_triangulation_precondition( start != Cell_handle() );
|
||
CGAL_triangulation_precondition( ! start->has_vertex(infinite) );
|
||
Cell_handle c = start;
|
||
|
||
//first tests whether p is collinear with the current triangulation
|
||
if ( ! collinear( p,
|
||
c->vertex(0)->point(),
|
||
c->vertex(1)->point()) ) {
|
||
lt = OUTSIDE_AFFINE_HULL;
|
||
return c;
|
||
}
|
||
// if p is collinear, location :
|
||
while (1) {
|
||
if ( c->has_vertex(infinite) ) {
|
||
// c must contain p in its interior
|
||
lt = OUTSIDE_CONVEX_HULL;
|
||
return c;
|
||
}
|
||
|
||
// else c is finite
|
||
// we test on which direction to continue the traversal
|
||
switch (collinear_position(c->vertex(0)->point(),
|
||
p,
|
||
c->vertex(1)->point()) ) {
|
||
case AFTER:
|
||
c = c->neighbor(0);
|
||
continue;
|
||
case BEFORE:
|
||
c = c->neighbor(1);
|
||
continue;
|
||
case MIDDLE:
|
||
lt = EDGE;
|
||
li = 0;
|
||
lj = 1;
|
||
return c;
|
||
case SOURCE:
|
||
lt = VERTEX;
|
||
li = 0;
|
||
return c;
|
||
case TARGET:
|
||
lt = VERTEX;
|
||
li = 1;
|
||
return c;
|
||
}
|
||
}
|
||
}
|
||
case 0:
|
||
{
|
||
Finite_vertices_iterator vit = finite_vertices_begin();
|
||
if ( ! equal( p, vit->point() ) ) {
|
||
lt = OUTSIDE_AFFINE_HULL;
|
||
}
|
||
else {
|
||
lt = VERTEX;
|
||
li = 0;
|
||
}
|
||
return vit->cell();
|
||
}
|
||
case -1:
|
||
{
|
||
lt = OUTSIDE_AFFINE_HULL;
|
||
return Cell_handle();
|
||
}
|
||
default:
|
||
{
|
||
CGAL_triangulation_assertion(false);
|
||
return Cell_handle();
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifndef CGAL_NO_STRUCTURAL_FILTERING
|
||
template <class Gt, class Tds, bool Upm>
|
||
inline
|
||
typename Triangulation_3<Gt, Tds, Upm>::Cell_handle
|
||
Triangulation_3<Gt, Tds, Upm>::
|
||
inexact_locate(const Point & t, Cell_handle start,
|
||
bool *p_could_lock_zone, int n_of_turns) const
|
||
{
|
||
CGAL_triangulation_expensive_assertion(start == Cell_handle() || tds().is_simplex(start) );
|
||
|
||
if (p_could_lock_zone)
|
||
*p_could_lock_zone = true;
|
||
|
||
if(dimension() < 3) return start;
|
||
|
||
// Make sure we continue from here with a finite cell.
|
||
if ( start == Cell_handle() )
|
||
start = infinite_cell();
|
||
|
||
int ind_inf;
|
||
if( start->has_vertex(infinite, ind_inf) )
|
||
start = start->neighbor(ind_inf);
|
||
|
||
CGAL_triangulation_precondition( start != Cell_handle() );
|
||
CGAL_triangulation_precondition( ! start->has_vertex(infinite) );
|
||
|
||
// We implement the remembering visibility walk.
|
||
// in this phase, no need to be stochastic
|
||
|
||
// Remembers the previous cell to avoid useless orientation tests.
|
||
Cell_handle previous = Cell_handle();
|
||
Cell_handle c = start;
|
||
|
||
#ifdef CGAL_MESH_3_LOCKING_STRATEGY_SIMPLE_GRID_LOCKING
|
||
if (p_could_lock_zone)
|
||
{
|
||
// CJTODO: useless? already locked buy Mesher_level?
|
||
//c->lock(); // WARNING: not atomic! => DEADLOCKS?
|
||
if (!try_lock_element(c))
|
||
{
|
||
*p_could_lock_zone = false;
|
||
return Cell_handle();
|
||
}
|
||
}
|
||
#endif
|
||
|
||
// Now treat the cell c.
|
||
try_next_cell:
|
||
|
||
n_of_turns--;
|
||
|
||
// We know that the 4 vertices of c are positively oriented.
|
||
// So, in order to test if p is seen outside from one of c's facets,
|
||
// we just replace the corresponding point by p in the orientation
|
||
// test. We do this using the array below.
|
||
const Point* pts[4] = { &(c->vertex(0)->point()),
|
||
&(c->vertex(1)->point()),
|
||
&(c->vertex(2)->point()),
|
||
&(c->vertex(3)->point()) };
|
||
|
||
// (non-stochastic) visibility walk
|
||
for (int i=0; i != 4; ++i) {
|
||
Cell_handle next = c->neighbor(i);
|
||
if (previous == next) continue;
|
||
|
||
// We temporarily put p at i's place in pts.
|
||
const Point* backup = pts[i];
|
||
pts[i] = &t;
|
||
if( inexact_orientation(*pts[0], *pts[1], *pts[2], *pts[3]) != NEGATIVE) {
|
||
pts[i] = backup;
|
||
continue;
|
||
}
|
||
if(next->has_vertex(infinite)) {
|
||
// We are outside the convex hull.
|
||
return next;
|
||
}
|
||
previous = c;
|
||
c = next;
|
||
#ifdef CGAL_MESH_3_LOCKING_STRATEGY_SIMPLE_GRID_LOCKING
|
||
if (p_could_lock_zone)
|
||
{
|
||
//previous->unlock(); // DON'T do that, "c" may be in
|
||
// the same locking cell as "previous"
|
||
//c->lock(); // WARNING: not atomic! => DEADLOCKS?
|
||
if (!try_lock_element(c))
|
||
{
|
||
*p_could_lock_zone = false;
|
||
return Cell_handle();
|
||
}
|
||
}
|
||
#endif
|
||
if(n_of_turns) goto try_next_cell;
|
||
}
|
||
|
||
return c;
|
||
}
|
||
#endif // no CGAL_NO_STRUCTURAL_FILTERING
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
Bounded_side
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
side_of_tetrahedron(const Point & p,
|
||
const Point & p0,
|
||
const Point & p1,
|
||
const Point & p2,
|
||
const Point & p3,
|
||
Locate_type & lt, int & i, int & j ) const
|
||
// p0,p1,p2,p3 supposed to be non coplanar
|
||
// tetrahedron p0,p1,p2,p3 is supposed to be well oriented
|
||
// returns :
|
||
// ON_BOUNDED_SIDE if p lies strictly inside the tetrahedron
|
||
// ON_BOUNDARY if p lies on one of the facets
|
||
// ON_UNBOUNDED_SIDE if p lies strictly outside the tetrahedron
|
||
{
|
||
CGAL_triangulation_precondition
|
||
( orientation(p0,p1,p2,p3) == POSITIVE );
|
||
|
||
Orientation o0,o1,o2,o3;
|
||
if ( ((o0 = orientation(p,p1,p2,p3)) == NEGATIVE) ||
|
||
((o1 = orientation(p0,p,p2,p3)) == NEGATIVE) ||
|
||
((o2 = orientation(p0,p1,p,p3)) == NEGATIVE) ||
|
||
((o3 = orientation(p0,p1,p2,p)) == NEGATIVE) ) {
|
||
lt = OUTSIDE_CONVEX_HULL;
|
||
return ON_UNBOUNDED_SIDE;
|
||
}
|
||
|
||
// now all the oi's are >=0
|
||
// sum gives the number of facets p lies on
|
||
int sum = ( (o0 == ZERO) ? 1 : 0 )
|
||
+ ( (o1 == ZERO) ? 1 : 0 )
|
||
+ ( (o2 == ZERO) ? 1 : 0 )
|
||
+ ( (o3 == ZERO) ? 1 : 0 );
|
||
|
||
switch (sum) {
|
||
case 0:
|
||
{
|
||
lt = CELL;
|
||
return ON_BOUNDED_SIDE;
|
||
}
|
||
case 1:
|
||
{
|
||
lt = FACET;
|
||
// i = index such that p lies on facet(i)
|
||
i = ( o0 == ZERO ) ? 0 :
|
||
( o1 == ZERO ) ? 1 :
|
||
( o2 == ZERO ) ? 2 :
|
||
3;
|
||
return ON_BOUNDARY;
|
||
}
|
||
case 2:
|
||
{
|
||
lt = EDGE;
|
||
// i = smallest index such that p does not lie on facet(i)
|
||
// i must be < 3 since p lies on 2 facets
|
||
i = ( o0 == POSITIVE ) ? 0 :
|
||
( o1 == POSITIVE ) ? 1 :
|
||
2;
|
||
// j = larger index such that p not on facet(j)
|
||
// j must be > 0 since p lies on 2 facets
|
||
j = ( o3 == POSITIVE ) ? 3 :
|
||
( o2 == POSITIVE ) ? 2 :
|
||
1;
|
||
return ON_BOUNDARY;
|
||
}
|
||
case 3:
|
||
{
|
||
lt = VERTEX;
|
||
// i = index such that p does not lie on facet(i)
|
||
i = ( o0 == POSITIVE ) ? 0 :
|
||
( o1 == POSITIVE ) ? 1 :
|
||
( o2 == POSITIVE ) ? 2 :
|
||
3;
|
||
return ON_BOUNDARY;
|
||
}
|
||
default:
|
||
{
|
||
// impossible : cannot be on 4 facets for a real tetrahedron
|
||
CGAL_triangulation_assertion(false);
|
||
return ON_BOUNDARY;
|
||
}
|
||
}
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
Bounded_side
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
side_of_cell(const Point & p,
|
||
Cell_handle c,
|
||
Locate_type & lt, int & i, int & j) const
|
||
// returns
|
||
// ON_BOUNDED_SIDE if p inside the cell
|
||
// (for an infinite cell this means that p lies strictly in the half space
|
||
// limited by its finite facet)
|
||
// ON_BOUNDARY if p on the boundary of the cell
|
||
// (for an infinite cell this means that p lies on the *finite* facet)
|
||
// ON_UNBOUNDED_SIDE if p lies outside the cell
|
||
// (for an infinite cell this means that p is not in the preceding
|
||
// two cases)
|
||
// lt has a meaning only when ON_BOUNDED_SIDE or ON_BOUNDARY
|
||
{
|
||
CGAL_triangulation_precondition( dimension() == 3 );
|
||
if ( ! is_infinite(c) ) {
|
||
return side_of_tetrahedron(p,
|
||
c->vertex(0)->point(),
|
||
c->vertex(1)->point(),
|
||
c->vertex(2)->point(),
|
||
c->vertex(3)->point(),
|
||
lt, i, j);
|
||
}
|
||
else {
|
||
int inf = c->index(infinite);
|
||
Orientation o;
|
||
Vertex_handle
|
||
v1=c->vertex((inf+1)&3),
|
||
v2=c->vertex((inf+2)&3),
|
||
v3=c->vertex((inf+3)&3);
|
||
if ( (inf&1) == 0 )
|
||
o = orientation(p, v1->point(), v2->point(), v3->point());
|
||
else
|
||
o = orientation(v3->point(), p, v1->point(), v2->point());
|
||
|
||
switch (o) {
|
||
case POSITIVE:
|
||
{
|
||
lt = CELL;
|
||
return ON_BOUNDED_SIDE;
|
||
}
|
||
case NEGATIVE:
|
||
return ON_UNBOUNDED_SIDE;
|
||
case ZERO:
|
||
{
|
||
// location in the finite facet
|
||
int i_f, j_f;
|
||
Bounded_side side =
|
||
side_of_triangle(p, v1->point(), v2->point(), v3->point(),
|
||
lt, i_f, j_f);
|
||
// lt need not be modified in most cases :
|
||
switch (side) {
|
||
case ON_BOUNDED_SIDE:
|
||
{
|
||
// lt == FACET ok
|
||
i = inf;
|
||
return ON_BOUNDARY;
|
||
}
|
||
case ON_BOUNDARY:
|
||
{
|
||
// lt == VERTEX OR EDGE ok
|
||
i = ( i_f == 0 ) ? ((inf+1)&3) :
|
||
( i_f == 1 ) ? ((inf+2)&3) :
|
||
((inf+3)&3);
|
||
if ( lt == EDGE ) {
|
||
j = (j_f == 0 ) ? ((inf+1)&3) :
|
||
( j_f == 1 ) ? ((inf+2)&3) :
|
||
((inf+3)&3);
|
||
}
|
||
return ON_BOUNDARY;
|
||
}
|
||
case ON_UNBOUNDED_SIDE:
|
||
{
|
||
// p lies on the plane defined by the finite facet
|
||
// lt must be initialized
|
||
return ON_UNBOUNDED_SIDE;
|
||
}
|
||
default:
|
||
{
|
||
CGAL_triangulation_assertion(false);
|
||
return ON_BOUNDARY;
|
||
}
|
||
} // switch side
|
||
}// case ZERO
|
||
default:
|
||
{
|
||
CGAL_triangulation_assertion(false);
|
||
return ON_BOUNDARY;
|
||
}
|
||
} // switch o
|
||
} // else infinite cell
|
||
} // side_of_cell
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
Bounded_side
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
side_of_triangle(const Point & p,
|
||
const Point & p0,
|
||
const Point & p1,
|
||
const Point & p2,
|
||
Locate_type & lt, int & i, int & j ) const
|
||
// p0,p1,p2 supposed to define a plane
|
||
// p supposed to lie on plane p0,p1,p2
|
||
// triangle p0,p1,p2 defines the orientation of the plane
|
||
// returns
|
||
// ON_BOUNDED_SIDE if p lies strictly inside the triangle
|
||
// ON_BOUNDARY if p lies on one of the edges
|
||
// ON_UNBOUNDED_SIDE if p lies strictly outside the triangle
|
||
{
|
||
CGAL_triangulation_precondition( coplanar(p,p0,p1,p2) );
|
||
|
||
Orientation o012 = coplanar_orientation(p0,p1,p2);
|
||
CGAL_triangulation_precondition( o012 != COLLINEAR );
|
||
|
||
Orientation o0; // edge p0 p1
|
||
Orientation o1; // edge p1 p2
|
||
Orientation o2; // edge p2 p0
|
||
|
||
if ((o0 = coplanar_orientation(p0,p1,p)) == opposite(o012) ||
|
||
(o1 = coplanar_orientation(p1,p2,p)) == opposite(o012) ||
|
||
(o2 = coplanar_orientation(p2,p0,p)) == opposite(o012)) {
|
||
lt = OUTSIDE_CONVEX_HULL;
|
||
return ON_UNBOUNDED_SIDE;
|
||
}
|
||
|
||
// now all the oi's are >=0
|
||
// sum gives the number of edges p lies on
|
||
int sum = ( (o0 == ZERO) ? 1 : 0 )
|
||
+ ( (o1 == ZERO) ? 1 : 0 )
|
||
+ ( (o2 == ZERO) ? 1 : 0 );
|
||
|
||
switch (sum) {
|
||
case 0:
|
||
{
|
||
lt = FACET;
|
||
return ON_BOUNDED_SIDE;
|
||
}
|
||
case 1:
|
||
{
|
||
lt = EDGE;
|
||
i = ( o0 == ZERO ) ? 0 :
|
||
( o1 == ZERO ) ? 1 :
|
||
2;
|
||
if ( i == 2 )
|
||
j=0;
|
||
else
|
||
j = i+1;
|
||
return ON_BOUNDARY;
|
||
}
|
||
case 2:
|
||
{
|
||
lt = VERTEX;
|
||
i = ( o0 == o012 ) ? 2 :
|
||
( o1 == o012 ) ? 0 :
|
||
1;
|
||
return ON_BOUNDARY;
|
||
}
|
||
default:
|
||
{
|
||
// cannot happen
|
||
CGAL_triangulation_assertion(false);
|
||
return ON_BOUNDARY;
|
||
}
|
||
}
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
Bounded_side
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
side_of_facet(const Point & p,
|
||
Cell_handle c,
|
||
Locate_type & lt, int & li, int & lj) const
|
||
// supposes dimension 2 otherwise does not work for infinite facets
|
||
// returns :
|
||
// ON_BOUNDED_SIDE if p inside the facet
|
||
// (for an infinite facet this means that p lies strictly in the half plane
|
||
// limited by its finite edge)
|
||
// ON_BOUNDARY if p on the boundary of the facet
|
||
// (for an infinite facet this means that p lies on the *finite* edge)
|
||
// ON_UNBOUNDED_SIDE if p lies outside the facet
|
||
// (for an infinite facet this means that p is not in the
|
||
// preceding two cases)
|
||
// lt has a meaning only when ON_BOUNDED_SIDE or ON_BOUNDARY
|
||
// when they mean anything, li and lj refer to indices in the cell c
|
||
// giving the facet (c,i)
|
||
{
|
||
CGAL_triangulation_precondition( dimension() == 2 );
|
||
if ( ! is_infinite(c,3) ) {
|
||
// The following precondition is useless because it is written
|
||
// in side_of_facet
|
||
// CGAL_triangulation_precondition( coplanar (p,
|
||
// c->vertex(0)->point,
|
||
// c->vertex(1)->point,
|
||
// c->vertex(2)->point) );
|
||
int i_t, j_t;
|
||
Bounded_side side = side_of_triangle(p,
|
||
c->vertex(0)->point(),
|
||
c->vertex(1)->point(),
|
||
c->vertex(2)->point(),
|
||
lt, i_t, j_t);
|
||
// We protect the following code by this test to avoid valgrind messages.
|
||
if (side == ON_BOUNDARY) {
|
||
// indices in the original cell :
|
||
li = ( i_t == 0 ) ? 0 :
|
||
( i_t == 1 ) ? 1 : 2;
|
||
lj = ( j_t == 0 ) ? 0 :
|
||
( j_t == 1 ) ? 1 : 2;
|
||
}
|
||
return side;
|
||
}
|
||
// else infinite facet
|
||
int inf = c->index(infinite);
|
||
// The following precondition is useless because it is written
|
||
// in side_of_facet
|
||
// CGAL_triangulation_precondition( coplanar (p,
|
||
// c->neighbor(inf)->vertex(0)->point(),
|
||
// c->neighbor(inf)->vertex(1)->point(),
|
||
// c->neighbor(inf)->vertex(2)->point()));
|
||
int i2 = next_around_edge(inf,3);
|
||
int i1 = 3-inf-i2;
|
||
Vertex_handle v1 = c->vertex(i1),
|
||
v2 = c->vertex(i2);
|
||
|
||
CGAL_triangulation_assertion(coplanar_orientation(v1->point(), v2->point(),
|
||
mirror_vertex(c, inf)->point()) == POSITIVE);
|
||
|
||
switch (coplanar_orientation(v1->point(), v2->point(), p)) {
|
||
case POSITIVE:
|
||
// p lies on the same side of v1v2 as vn, so not in f
|
||
return ON_UNBOUNDED_SIDE;
|
||
case NEGATIVE:
|
||
// p lies in f
|
||
lt = FACET;
|
||
li = 3;
|
||
return ON_BOUNDED_SIDE;
|
||
default: // case ZERO:
|
||
// p collinear with v1v2
|
||
int i_e;
|
||
switch (side_of_segment(p, v1->point(), v2->point(), lt, i_e)) {
|
||
// computation of the indices in the original cell
|
||
case ON_BOUNDED_SIDE:
|
||
// lt == EDGE ok
|
||
li = i1;
|
||
lj = i2;
|
||
return ON_BOUNDARY;
|
||
case ON_BOUNDARY:
|
||
// lt == VERTEX ok
|
||
li = ( i_e == 0 ) ? i1 : i2;
|
||
return ON_BOUNDARY;
|
||
default: // case ON_UNBOUNDED_SIDE:
|
||
// p lies on the line defined by the finite edge
|
||
return ON_UNBOUNDED_SIDE;
|
||
}
|
||
}
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
Bounded_side
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
side_of_segment(const Point & p,
|
||
const Point & p0,
|
||
const Point & p1,
|
||
Locate_type & lt, int & i ) const
|
||
// p0, p1 supposed to be different
|
||
// p supposed to be collinear to p0, p1
|
||
// returns :
|
||
// ON_BOUNDED_SIDE if p lies strictly inside the edge
|
||
// ON_BOUNDARY if p equals p0 or p1
|
||
// ON_UNBOUNDED_SIDE if p lies strictly outside the edge
|
||
{
|
||
CGAL_triangulation_precondition( ! equal(p0, p1) );
|
||
CGAL_triangulation_precondition( collinear(p, p0, p1) );
|
||
|
||
switch (collinear_position(p0, p, p1)) {
|
||
case MIDDLE:
|
||
lt = EDGE;
|
||
return ON_BOUNDED_SIDE;
|
||
case SOURCE:
|
||
lt = VERTEX;
|
||
i = 0;
|
||
return ON_BOUNDARY;
|
||
case TARGET:
|
||
lt = VERTEX;
|
||
i = 1;
|
||
return ON_BOUNDARY;
|
||
default: // case BEFORE: case AFTER:
|
||
lt = OUTSIDE_CONVEX_HULL;
|
||
return ON_UNBOUNDED_SIDE;
|
||
}
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
Bounded_side
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
side_of_edge(const Point & p,
|
||
Cell_handle c,
|
||
Locate_type & lt, int & li) const
|
||
// supposes dimension 1 otherwise does not work for infinite edges
|
||
// returns :
|
||
// ON_BOUNDED_SIDE if p inside the edge
|
||
// (for an infinite edge this means that p lies in the half line
|
||
// defined by the vertex)
|
||
// ON_BOUNDARY if p equals one of the vertices
|
||
// ON_UNBOUNDED_SIDE if p lies outside the edge
|
||
// (for an infinite edge this means that p lies on the other half line)
|
||
// lt has a meaning when ON_BOUNDED_SIDE and ON_BOUNDARY
|
||
// li refer to indices in the cell c
|
||
{
|
||
CGAL_triangulation_precondition( dimension() == 1 );
|
||
if ( ! is_infinite(c,0,1) )
|
||
return side_of_segment(p, c->vertex(0)->point(), c->vertex(1)->point(),
|
||
lt, li);
|
||
// else infinite edge
|
||
int inf = c->index(infinite);
|
||
switch (collinear_position(c->vertex(1-inf)->point(), p,
|
||
mirror_vertex(c, inf)->point())) {
|
||
case SOURCE:
|
||
lt = VERTEX;
|
||
li = 1-inf;
|
||
return ON_BOUNDARY;
|
||
case BEFORE:
|
||
lt = EDGE;
|
||
return ON_BOUNDED_SIDE;
|
||
default: // case MIDDLE: case AFTER: case TARGET:
|
||
return ON_UNBOUNDED_SIDE;
|
||
}
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
flip( Cell_handle c, int i )
|
||
{
|
||
CGAL_triangulation_precondition( (dimension() == 3) && (0<=i) && (i<4)
|
||
&& (number_of_vertices() >= 5) );
|
||
|
||
Cell_handle n = c->neighbor(i);
|
||
int in = n->index(c);
|
||
if ( is_infinite( c ) || is_infinite( n ) ) return false;
|
||
|
||
if ( i%2 == 1 ) {
|
||
if ( orientation( c->vertex((i+1)&3)->point(),
|
||
c->vertex((i+2)&3)->point(),
|
||
n->vertex(in)->point(),
|
||
c->vertex(i)->point() )
|
||
!= POSITIVE ) return false;
|
||
if ( orientation( c->vertex((i+2)&3)->point(),
|
||
c->vertex((i+3)&3)->point(),
|
||
n->vertex(in)->point(),
|
||
c->vertex(i)->point() )
|
||
!= POSITIVE ) return false;
|
||
if ( orientation( c->vertex((i+3)&3)->point(),
|
||
c->vertex((i+1)&3)->point(),
|
||
n->vertex(in)->point(),
|
||
c->vertex(i)->point() )
|
||
!= POSITIVE ) return false;
|
||
}
|
||
else {
|
||
if ( orientation( c->vertex((i+2)&3)->point(),
|
||
c->vertex((i+1)&3)->point(),
|
||
n->vertex(in)->point(),
|
||
c->vertex(i)->point() )
|
||
!= POSITIVE ) return false;
|
||
if ( orientation( c->vertex((i+3)&3)->point(),
|
||
c->vertex((i+2)&3)->point(),
|
||
n->vertex(in)->point(),
|
||
c->vertex(i)->point() )
|
||
!= POSITIVE ) return false;
|
||
if ( orientation( c->vertex((i+1)&3)->point(),
|
||
c->vertex((i+3)&3)->point(),
|
||
n->vertex(in)->point(),
|
||
c->vertex(i)->point() )
|
||
!= POSITIVE ) return false;
|
||
}
|
||
|
||
_tds.flip_flippable(c, i);
|
||
return true;
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
void
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
flip_flippable( Cell_handle c, int i )
|
||
{
|
||
CGAL_triangulation_precondition( (dimension() == 3) && (0<=i) && (i<4)
|
||
&& (number_of_vertices() >= 5) );
|
||
CGAL_triangulation_precondition_code( Cell_handle n = c->neighbor(i); );
|
||
CGAL_triangulation_precondition_code( int in = n->index(c); );
|
||
CGAL_triangulation_precondition( ( ! is_infinite( c ) ) &&
|
||
( ! is_infinite( n ) ) );
|
||
|
||
if ( i%2 == 1 ) {
|
||
CGAL_triangulation_precondition( orientation( c->vertex((i+1)&3)->point(),
|
||
c->vertex((i+2)&3)->point(),
|
||
n->vertex(in)->point(),
|
||
c->vertex(i)->point() )
|
||
== POSITIVE );
|
||
CGAL_triangulation_precondition( orientation( c->vertex((i+2)&3)->point(),
|
||
c->vertex((i+3)&3)->point(),
|
||
n->vertex(in)->point(),
|
||
c->vertex(i)->point() )
|
||
== POSITIVE );
|
||
CGAL_triangulation_precondition( orientation( c->vertex((i+3)&3)->point(),
|
||
c->vertex((i+1)&3)->point(),
|
||
n->vertex(in)->point(),
|
||
c->vertex(i)->point() )
|
||
== POSITIVE );
|
||
}
|
||
else {
|
||
CGAL_triangulation_precondition( orientation( c->vertex((i+2)&3)->point(),
|
||
c->vertex((i+1)&3)->point(),
|
||
n->vertex(in)->point(),
|
||
c->vertex(i)->point() )
|
||
== POSITIVE );
|
||
CGAL_triangulation_precondition( orientation( c->vertex((i+3)&3)->point(),
|
||
c->vertex((i+2)&3)->point(),
|
||
n->vertex(in)->point(),
|
||
c->vertex(i)->point() )
|
||
== POSITIVE );
|
||
CGAL_triangulation_precondition( orientation( c->vertex((i+1)&3)->point(),
|
||
c->vertex((i+3)&3)->point(),
|
||
n->vertex(in)->point(),
|
||
c->vertex(i)->point() )
|
||
== POSITIVE );
|
||
}
|
||
|
||
_tds.flip_flippable(c, i);
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
flip( Cell_handle c, int i, int j )
|
||
// flips edge i,j of cell c
|
||
{
|
||
CGAL_triangulation_precondition( (dimension() == 3)
|
||
&& (0<=i) && (i<4)
|
||
&& (0<=j) && (j<4)
|
||
&& ( i != j )
|
||
&& (number_of_vertices() >= 5) );
|
||
|
||
// checks that degree 3 and not on the convex hull
|
||
int degree = 0;
|
||
Cell_circulator ccir = incident_cells(c,i,j);
|
||
Cell_circulator cdone = ccir;
|
||
do {
|
||
if ( is_infinite(ccir) ) return false;
|
||
++degree;
|
||
++ccir;
|
||
} while ( ccir != cdone );
|
||
|
||
if ( degree != 3 ) return false;
|
||
|
||
// checks that future tetrahedra are well oriented
|
||
Cell_handle n = c->neighbor( next_around_edge(i,j) );
|
||
int in = n->index( c->vertex(i) );
|
||
int jn = n->index( c->vertex(j) );
|
||
if ( orientation( c->vertex(next_around_edge(i,j))->point(),
|
||
c->vertex(next_around_edge(j,i))->point(),
|
||
n->vertex(next_around_edge(jn,in))->point(),
|
||
c->vertex(j)->point() )
|
||
!= POSITIVE ) return false;
|
||
if ( orientation( c->vertex(i)->point(),
|
||
c->vertex(next_around_edge(j,i))->point(),
|
||
n->vertex(next_around_edge(jn,in))->point(),
|
||
c->vertex(next_around_edge(i,j))->point() )
|
||
!= POSITIVE ) return false;
|
||
|
||
_tds.flip_flippable(c, i, j);
|
||
return true;
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
void
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
flip_flippable( Cell_handle c, int i, int j )
|
||
// flips edge i,j of cell c
|
||
{
|
||
#if !defined CGAL_TRIANGULATION_NO_PRECONDITIONS && \
|
||
!defined CGAL_NO_PRECONDITIONS && !defined NDEBUG
|
||
CGAL_triangulation_precondition( (dimension() == 3)
|
||
&& (0<=i) && (i<4)
|
||
&& (0<=j) && (j<4)
|
||
&& ( i != j )
|
||
&& (number_of_vertices() >= 5) );
|
||
int degree = 0;
|
||
Cell_circulator ccir = incident_cells(c,i,j);
|
||
Cell_circulator cdone = ccir;
|
||
do {
|
||
CGAL_triangulation_precondition( ! is_infinite(ccir) );
|
||
++degree;
|
||
++ccir;
|
||
} while ( ccir != cdone );
|
||
CGAL_triangulation_precondition( degree == 3 );
|
||
|
||
Cell_handle n = c->neighbor( next_around_edge(i, j) );
|
||
int in = n->index( c->vertex(i) );
|
||
int jn = n->index( c->vertex(j) );
|
||
CGAL_triangulation_precondition
|
||
( orientation( c->vertex(next_around_edge(i,j))->point(),
|
||
c->vertex(next_around_edge(j,i))->point(),
|
||
n->vertex(next_around_edge(jn,in))->point(),
|
||
c->vertex(j)->point() ) == POSITIVE );
|
||
CGAL_triangulation_precondition
|
||
( orientation( c->vertex(i)->point(),
|
||
c->vertex(next_around_edge(j,i))->point(),
|
||
n->vertex(next_around_edge(jn,in))->point(),
|
||
c->vertex(next_around_edge(i,j))->point() ) == POSITIVE );
|
||
#endif
|
||
_tds.flip_flippable(c, i, j);
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
typename Triangulation_3<GT,Tds,Upm>::Vertex_handle
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
insert(const Point & p, Cell_handle start)
|
||
{
|
||
Locate_type lt;
|
||
int li, lj;
|
||
Cell_handle c = locate( p, lt, li, lj, start);
|
||
return insert(p, lt, c, li, lj);
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
typename Triangulation_3<GT,Tds,Upm>::Vertex_handle
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
insert(const Point & p, Locate_type lt, Cell_handle c, int li, int lj)
|
||
{
|
||
switch (lt) {
|
||
case VERTEX:
|
||
return c->vertex(li);
|
||
case EDGE:
|
||
return insert_in_edge(p, c, li, lj);
|
||
case FACET:
|
||
return insert_in_facet(p, c, li);
|
||
case CELL:
|
||
return insert_in_cell(p, c);
|
||
case OUTSIDE_CONVEX_HULL:
|
||
return insert_outside_convex_hull(p, c);
|
||
case OUTSIDE_AFFINE_HULL:
|
||
default:
|
||
return insert_outside_affine_hull(p);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
template < class Conflict_tester, class Hidden_points_visitor >
|
||
typename Triangulation_3<GT,Tds,Upm>::Vertex_handle
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
insert_in_conflict(const Point & p,
|
||
Locate_type lt, Cell_handle c, int li, int /*lj*/,
|
||
const Conflict_tester &tester,
|
||
Hidden_points_visitor &hider)
|
||
{
|
||
switch (dimension()) {
|
||
case 3:
|
||
{
|
||
if ((lt == VERTEX) &&
|
||
(tester.compare_weight(c->vertex(li)->point(), p)==0) ) {
|
||
return c->vertex(li);
|
||
}
|
||
// If the new point is not in conflict with its cell, it is hidden.
|
||
if (!tester.test_initial_cell(c)) {
|
||
hider.hide_point(c,p);
|
||
return Vertex_handle();
|
||
}
|
||
|
||
// Ok, we really insert the point now.
|
||
// First, find the conflict region.
|
||
std::vector<Cell_handle> cells;
|
||
Facet facet;
|
||
|
||
cells.reserve(32);
|
||
find_conflicts
|
||
(c, tester, make_triple(Oneset_iterator<Facet>(facet),
|
||
std::back_inserter(cells),
|
||
Emptyset_iterator()));
|
||
|
||
// Remember the points that are hidden by the conflicting cells,
|
||
// as they will be deleted during the insertion.
|
||
hider.process_cells_in_conflict(cells.begin(), cells.end());
|
||
|
||
Vertex_handle v = _insert_in_hole(p, cells.begin(), cells.end(),
|
||
facet.first, facet.second);
|
||
|
||
// Store the hidden points in their new cells.
|
||
hider.reinsert_vertices(v);
|
||
return v;
|
||
}
|
||
case 2:
|
||
{
|
||
// This check is added compared to the 3D case
|
||
if (lt == OUTSIDE_AFFINE_HULL)
|
||
return insert_outside_affine_hull (p);
|
||
|
||
if ((lt == VERTEX) &&
|
||
(tester.compare_weight(c->vertex(li)->point(), p)==0) ) {
|
||
return c->vertex(li);
|
||
}
|
||
// If the new point is not in conflict with its cell, it is hidden.
|
||
if (!tester.test_initial_cell(c)) {
|
||
hider.hide_point(c,p);
|
||
return Vertex_handle();
|
||
}
|
||
|
||
// Ok, we really insert the point now.
|
||
// First, find the conflict region.
|
||
std::vector<Cell_handle> cells;
|
||
Facet facet;
|
||
|
||
cells.reserve(32);
|
||
find_conflicts
|
||
(c, tester, make_triple(Oneset_iterator<Facet>(facet),
|
||
std::back_inserter(cells),
|
||
Emptyset_iterator()));
|
||
|
||
// Remember the points that are hidden by the conflicting cells,
|
||
// as they will be deleted during the insertion.
|
||
hider.process_cells_in_conflict(cells.begin(), cells.end());
|
||
|
||
Vertex_handle v = _insert_in_hole(p, cells.begin(), cells.end(),
|
||
facet.first, facet.second);
|
||
|
||
// Store the hidden points in their new cells.
|
||
hider.reinsert_vertices(v);
|
||
return v;
|
||
}
|
||
default:
|
||
{
|
||
// dimension() <= 1
|
||
if (lt == OUTSIDE_AFFINE_HULL)
|
||
return insert_outside_affine_hull (p);
|
||
|
||
if (lt == VERTEX &&
|
||
tester.compare_weight(c->vertex(li)->point(), p) == 0) {
|
||
return c->vertex(li);
|
||
}
|
||
|
||
// If the new point is not in conflict with its cell, it is hidden.
|
||
if (! tester.test_initial_cell(c)) {
|
||
hider.hide_point(c,p);
|
||
return Vertex_handle();
|
||
}
|
||
|
||
if (dimension() == 0) {
|
||
return hider.replace_vertex(c, li, p);
|
||
}
|
||
|
||
|
||
// dimension() == 1;
|
||
|
||
// Ok, we really insert the point now.
|
||
// First, find the conflict region.
|
||
std::vector<Cell_handle> cells;
|
||
Facet facet;
|
||
Cell_handle bound[2];
|
||
// corresponding index: bound[j]->neighbor(1-j) is in conflict.
|
||
|
||
// We get all cells in conflict,
|
||
// and remember the 2 external boundaries.
|
||
cells.push_back(c);
|
||
|
||
for (int j = 0; j<2; ++j) {
|
||
Cell_handle n = c->neighbor(j);
|
||
while ( tester(n) ) {
|
||
cells.push_back(n);
|
||
n = n->neighbor(j);
|
||
}
|
||
bound[j] = n;
|
||
}
|
||
|
||
// Insertion.
|
||
hider.process_cells_in_conflict(cells.begin(), cells.end());
|
||
|
||
tds().delete_cells(cells.begin(), cells.end());
|
||
|
||
// We preserve the order (like the orientation in 2D-3D).
|
||
Vertex_handle v = tds().create_vertex();
|
||
Cell_handle c0 = tds().create_face(v, bound[0]->vertex(0), Vertex_handle());
|
||
Cell_handle c1 = tds().create_face(bound[1]->vertex(1), v, Vertex_handle());
|
||
tds().set_adjacency(c0, 1, c1, 0);
|
||
tds().set_adjacency(bound[0], 1, c0, 0);
|
||
tds().set_adjacency(c1, 1, bound[1], 0);
|
||
bound[0]->vertex(0)->set_cell(bound[0]);
|
||
bound[1]->vertex(1)->set_cell(bound[1]);
|
||
v->set_cell(c0);
|
||
v->set_point (p);
|
||
|
||
hider.reinsert_vertices(v);
|
||
|
||
return v;
|
||
}
|
||
}
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
typename Triangulation_3<GT,Tds,Upm>::Vertex_handle
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
insert_in_cell(const Point & p, Cell_handle c)
|
||
{
|
||
CGAL_triangulation_precondition( dimension() == 3 );
|
||
CGAL_triangulation_precondition_code
|
||
( Locate_type lt;
|
||
int i; int j; );
|
||
CGAL_triangulation_precondition
|
||
( side_of_tetrahedron( p,
|
||
c->vertex(0)->point(),
|
||
c->vertex(1)->point(),
|
||
c->vertex(2)->point(),
|
||
c->vertex(3)->point(),
|
||
lt,i,j ) == ON_BOUNDED_SIDE );
|
||
|
||
Vertex_handle v = _tds.insert_in_cell(c);
|
||
v->set_point(p);
|
||
return v;
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
inline
|
||
typename Triangulation_3<GT,Tds,Upm>::Vertex_handle
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
insert_in_facet(const Point & p, Cell_handle c, int i)
|
||
{
|
||
CGAL_triangulation_precondition( dimension() == 2 || dimension() == 3);
|
||
CGAL_triangulation_precondition( (dimension() == 2 && i == 3)
|
||
|| (dimension() == 3 && i >= 0 && i <= 3) );
|
||
CGAL_triangulation_exactness_precondition_code
|
||
( Locate_type lt;
|
||
int li; int lj; );
|
||
CGAL_triangulation_exactness_precondition
|
||
( coplanar( p, c->vertex((i+1)&3)->point(),
|
||
c->vertex((i+2)&3)->point(),
|
||
c->vertex((i+3)&3)->point() )
|
||
&&
|
||
side_of_triangle( p,
|
||
c->vertex((i+1)&3)->point(),
|
||
c->vertex((i+2)&3)->point(),
|
||
c->vertex((i+3)&3)->point(),
|
||
lt, li, lj) == ON_BOUNDED_SIDE );
|
||
|
||
Vertex_handle v = _tds.insert_in_facet(c, i);
|
||
v->set_point(p);
|
||
return v;
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
typename Triangulation_3<GT,Tds,Upm>::Vertex_handle
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
insert_in_edge(const Point & p, Cell_handle c, int i, int j)
|
||
{
|
||
CGAL_triangulation_precondition( i != j );
|
||
CGAL_triangulation_precondition( dimension() >= 1 && dimension() <= 3 );
|
||
CGAL_triangulation_precondition( i >= 0 && i <= dimension()
|
||
&& j >= 0 && j <= dimension() );
|
||
CGAL_triangulation_exactness_precondition_code( Locate_type lt; int li; );
|
||
switch ( dimension() ) {
|
||
case 3:
|
||
case 2:
|
||
{
|
||
CGAL_triangulation_precondition( ! is_infinite(c, i, j) );
|
||
CGAL_triangulation_exactness_precondition(
|
||
collinear( c->vertex(i)->point(),
|
||
p,
|
||
c->vertex(j)->point() )
|
||
&& side_of_segment( p,
|
||
c->vertex(i)->point(),
|
||
c->vertex(j)->point(),
|
||
lt, li ) == ON_BOUNDED_SIDE );
|
||
break;
|
||
}
|
||
case 1:
|
||
{
|
||
CGAL_triangulation_exactness_precondition( side_of_edge(p, c, lt, li)
|
||
== ON_BOUNDED_SIDE );
|
||
break;
|
||
}
|
||
}
|
||
|
||
Vertex_handle v = _tds.insert_in_edge(c, i, j);
|
||
v->set_point(p);
|
||
return v;
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
typename Triangulation_3<GT,Tds,Upm>::Vertex_handle
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
insert_outside_convex_hull(const Point & p, Cell_handle c)
|
||
// c is an infinite cell containing p
|
||
// p is strictly outside the convex hull
|
||
// dimension 0 not allowed, use outside-affine-hull
|
||
{
|
||
CGAL_triangulation_precondition( dimension() > 0 );
|
||
CGAL_triangulation_precondition( c->has_vertex(infinite) );
|
||
// the precondition that p is in c is tested in each of the
|
||
// insertion methods called from this method
|
||
switch ( dimension() ) {
|
||
case 1:
|
||
{
|
||
// // p lies in the infinite edge neighboring c
|
||
// // on the other side of li
|
||
// return insert_in_edge(p,c->neighbor(1-li),0,1);
|
||
return insert_in_edge(p,c,0,1);
|
||
}
|
||
case 2:
|
||
{
|
||
Conflict_tester_outside_convex_hull_2 tester(p, this);
|
||
Vertex_handle v = insert_conflict(c, tester);
|
||
v->set_point(p);
|
||
return v;
|
||
}
|
||
default: // case 3:
|
||
{
|
||
Conflict_tester_outside_convex_hull_3 tester(p, this);
|
||
Vertex_handle v = insert_conflict(c, tester);
|
||
v->set_point(p);
|
||
return v;
|
||
}
|
||
}
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
typename Triangulation_3<GT,Tds,Upm>::Vertex_handle
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
insert_outside_affine_hull(const Point & p)
|
||
{
|
||
CGAL_triangulation_precondition( dimension() < 3 );
|
||
bool reorient;
|
||
switch ( dimension() ) {
|
||
case 1:
|
||
{
|
||
Cell_handle c = infinite_cell();
|
||
Cell_handle n = c->neighbor(c->index(infinite_vertex()));
|
||
Orientation o = coplanar_orientation(n->vertex(0)->point(),
|
||
n->vertex(1)->point(), p);
|
||
CGAL_triangulation_precondition ( o != COLLINEAR );
|
||
reorient = o == NEGATIVE;
|
||
break;
|
||
}
|
||
case 2:
|
||
{
|
||
Cell_handle c = infinite_cell();
|
||
Cell_handle n = c->neighbor(c->index(infinite_vertex()));
|
||
Orientation o = orientation( n->vertex(0)->point(),
|
||
n->vertex(1)->point(),
|
||
n->vertex(2)->point(), p );
|
||
CGAL_triangulation_precondition ( o != COPLANAR );
|
||
reorient = o == NEGATIVE;
|
||
break;
|
||
}
|
||
default:
|
||
reorient = false;
|
||
}
|
||
|
||
Vertex_handle v = _tds.insert_increase_dimension(infinite_vertex());
|
||
v->set_point(p);
|
||
|
||
if (reorient)
|
||
_tds.reorient();
|
||
|
||
return v;
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
template < class OutputItCells >
|
||
typename Triangulation_3<GT,Tds,Upm>::Vertex_handle
|
||
Triangulation_3<GT,Tds,Upm>::insert_and_give_new_cells(const Point &p,
|
||
OutputItCells fit,
|
||
Cell_handle start)
|
||
{
|
||
Vertex_handle v = insert(p, start);
|
||
int dimension = this->dimension();
|
||
if(dimension == 3) this->incident_cells(v, fit);
|
||
else if(dimension == 2)
|
||
{
|
||
Cell_handle c = v->cell(), end = c;
|
||
do {
|
||
*fit++ = c;
|
||
int i = c->index(v);
|
||
c = c->neighbor((i+1)%3);
|
||
} while(c != end);
|
||
}
|
||
else if(dimension == 1)
|
||
{
|
||
Cell_handle c = v->cell();
|
||
*fit++ = c;
|
||
*fit++ = c->neighbor((~(c->index(v)))&1);
|
||
}
|
||
else *fit++ = v->cell(); // dimension = 0
|
||
return v;
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
template < class OutputItCells >
|
||
typename Triangulation_3<GT,Tds,Upm>::Vertex_handle
|
||
Triangulation_3<GT,Tds,Upm>::insert_and_give_new_cells(const Point& p,
|
||
OutputItCells fit,
|
||
Vertex_handle hint)
|
||
{
|
||
Vertex_handle v = insert(p, hint);
|
||
int dimension = this->dimension();
|
||
if(dimension == 3) this->incident_cells(v, fit);
|
||
else if(dimension == 2)
|
||
{
|
||
Cell_handle c = v->cell(), end = c;
|
||
do {
|
||
*fit++ = c;
|
||
int i = c->index(v);
|
||
c = c->neighbor((i+1)%3);
|
||
} while(c != end);
|
||
}
|
||
else if(dimension == 1)
|
||
{
|
||
Cell_handle c = v->cell();
|
||
*fit++ = c;
|
||
*fit++ = c->neighbor((~(c->index(v)))&1);
|
||
}
|
||
else *fit++ = v->cell(); // dimension = 0
|
||
return v;
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
template < class OutputItCells >
|
||
typename Triangulation_3<GT,Tds,Upm>::Vertex_handle
|
||
Triangulation_3<GT,Tds,Upm>::insert_and_give_new_cells(const Point& p,
|
||
Locate_type lt,
|
||
Cell_handle c, int li, int lj,
|
||
OutputItCells fit)
|
||
{
|
||
Vertex_handle v = insert(p, lt, c, li, lj);
|
||
int dimension = this->dimension();
|
||
if(dimension == 3) this->incident_cells(v, fit);
|
||
else if(dimension == 2)
|
||
{
|
||
Cell_handle c = v->cell(), end = c;
|
||
do {
|
||
*fit++ = c;
|
||
int i = c->index(v);
|
||
c = c->neighbor((i+1)%3);
|
||
} while(c != end);
|
||
}
|
||
else if(dimension == 1)
|
||
{
|
||
Cell_handle c = v->cell();
|
||
*fit++ = c;
|
||
*fit++ = c->neighbor((~(c->index(v)))&1);
|
||
}
|
||
else *fit++ = v->cell(); // dimension = 0
|
||
return v;
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
typename Triangulation_3<Gt,Tds,Upm>::Vertex_triple
|
||
Triangulation_3<Gt,Tds,Upm>::
|
||
make_vertex_triple(const Facet& f) const
|
||
{
|
||
Cell_handle ch = f.first;
|
||
int i = f.second;
|
||
|
||
return Vertex_triple(ch->vertex(vertex_triple_index(i,0)),
|
||
ch->vertex(vertex_triple_index(i,1)),
|
||
ch->vertex(vertex_triple_index(i,2)));
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
void
|
||
Triangulation_3<Gt,Tds,Upm>::
|
||
make_canonical(Vertex_triple& t) const
|
||
{
|
||
int i = (&*(t.first) < &*(t.second))? 0 : 1;
|
||
if(i==0) {
|
||
i = (&*(t.first) < &*(t.third))? 0 : 2;
|
||
} else {
|
||
i = (&*(t.second) < &*(t.third))? 1 : 2;
|
||
}
|
||
Vertex_handle tmp;
|
||
switch(i){
|
||
case 0: return;
|
||
case 1:
|
||
tmp = t.first;
|
||
t.first = t.second;
|
||
t.second = t.third;
|
||
t.third = tmp;
|
||
return;
|
||
default:
|
||
tmp = t.first;
|
||
t.first = t.third;
|
||
t.third = t.second;
|
||
t.second = tmp;
|
||
}
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
test_dim_down(Vertex_handle v) const
|
||
// tests whether removing v decreases the dimension of the triangulation
|
||
// true iff
|
||
// v is incident to all finite cells/facets
|
||
// and all the other vertices are coplanar/collinear in dim3/2.
|
||
{
|
||
CGAL_triangulation_precondition(dimension() >= 0);
|
||
CGAL_triangulation_precondition(! is_infinite(v) );
|
||
|
||
if (dimension() == 3) {
|
||
Finite_cells_iterator cit = finite_cells_begin();
|
||
|
||
int iv;
|
||
if ( ! cit->has_vertex(v,iv) )
|
||
return false;
|
||
const Point &p1=cit->vertex((iv+1)&3)->point();
|
||
const Point &p2=cit->vertex((iv+2)&3)->point();
|
||
const Point &p3=cit->vertex((iv+3)&3)->point();
|
||
++cit;
|
||
|
||
for (; cit != finite_cells_end(); ++cit ) {
|
||
if ( ! cit->has_vertex(v,iv) )
|
||
return false;
|
||
for (int i=1; i<4; i++ )
|
||
if ( !coplanar(p1,p2,p3,cit->vertex((iv+i)&3)->point()) )
|
||
return false;
|
||
}
|
||
}
|
||
else if (dimension() == 2)
|
||
{
|
||
Finite_facets_iterator cit = finite_facets_begin();
|
||
|
||
int iv;
|
||
if ( ! cit->first->has_vertex(v,iv) )
|
||
return false;
|
||
const Point &p1 = cit->first->vertex(cw(iv))->point();
|
||
const Point &p2 = cit->first->vertex(ccw(iv))->point();
|
||
++cit;
|
||
|
||
for (; cit != finite_facets_end(); ++cit ) {
|
||
if ( ! cit->first->has_vertex(v,iv) )
|
||
return false;
|
||
if ( !collinear(p1, p2, cit->first->vertex(cw(iv))->point()) ||
|
||
!collinear(p1, p2, cit->first->vertex(ccw(iv))->point()) )
|
||
return false;
|
||
}
|
||
}
|
||
else // dimension() == 1 or 0
|
||
return number_of_vertices() == (size_type) dimension() + 1;
|
||
|
||
return true;
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class VertexRemover >
|
||
VertexRemover&
|
||
Triangulation_3<Gt, Tds, Upm>::
|
||
make_hole_2D(Vertex_handle v, std::list<Edge_2D> &hole, VertexRemover &remover)
|
||
{
|
||
std::vector<Cell_handle> to_delete;
|
||
to_delete.reserve(32);
|
||
|
||
Face_circulator fc = tds().incident_faces(v);
|
||
Face_circulator done(fc);
|
||
|
||
// We prepare for deleting all interior cells.
|
||
// We ->set_cell() pointers to cells outside the hole.
|
||
// We push the Edges_2D of the boundary (seen from outside) in "hole".
|
||
do {
|
||
Cell_handle f = fc;
|
||
int i = f->index(v);
|
||
Cell_handle fn = f->neighbor(i);
|
||
int in = fn->index(f);
|
||
|
||
f->vertex(cw(i))->set_cell(fn);
|
||
fn->set_neighbor(in, Cell_handle());
|
||
|
||
hole.push_back(Edge_2D(fn, in));
|
||
remover.add_hidden_points(f);
|
||
to_delete.push_back(f);
|
||
|
||
++fc;
|
||
} while (fc != done);
|
||
|
||
tds().delete_cells(to_delete.begin(), to_delete.end());
|
||
return remover;
|
||
}
|
||
|
||
// this one also erases a set of cells
|
||
// which is useful to the move method
|
||
// outputting newly created cells
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class VertexRemover >
|
||
VertexRemover&
|
||
Triangulation_3<Gt, Tds, Upm>::
|
||
make_hole_2D(Vertex_handle v, std::list<Edge_2D> &hole, VertexRemover &remover,
|
||
std::set<Cell_handle> &cells_set)
|
||
{
|
||
std::vector<Cell_handle> to_delete;
|
||
to_delete.reserve(32);
|
||
|
||
Face_circulator fc = tds().incident_faces(v);
|
||
Face_circulator done(fc);
|
||
|
||
// We prepare for deleting all interior cells.
|
||
// We ->set_cell() pointers to cells outside the hole.
|
||
// We push the Edges_2D of the boundary (seen from outside) in "hole".
|
||
do {
|
||
Cell_handle f = fc;
|
||
int i = f->index(v);
|
||
Cell_handle fn = f->neighbor(i);
|
||
int in = fn->index(f);
|
||
|
||
f->vertex(cw(i))->set_cell(fn);
|
||
fn->set_neighbor(in, Cell_handle());
|
||
|
||
hole.push_back(Edge_2D(fn, in));
|
||
remover.add_hidden_points(f);
|
||
to_delete.push_back(f);
|
||
|
||
++fc;
|
||
} while (fc != done);
|
||
|
||
for(typename std::vector<Cell_handle>::const_iterator ib = to_delete.begin(),
|
||
iend = to_delete.end(); ib != iend; ib++) cells_set.erase(*ib);
|
||
|
||
tds().delete_cells(to_delete.begin(), to_delete.end());
|
||
return remover;
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class VertexRemover >
|
||
void
|
||
Triangulation_3<Gt, Tds, Upm>::
|
||
fill_hole_2D(std::list<Edge_2D> & first_hole, VertexRemover &remover)
|
||
{
|
||
typedef std::list<Edge_2D> Hole;
|
||
|
||
std::vector<Hole> hole_list;
|
||
|
||
Cell_handle f, ff, fn;
|
||
int i, ii, in;
|
||
|
||
hole_list.push_back(first_hole);
|
||
|
||
while( ! hole_list.empty())
|
||
{
|
||
Hole hole = hole_list.back();
|
||
hole_list.pop_back();
|
||
|
||
// if the hole has only three edges, create the triangle
|
||
if (hole.size() == 3) {
|
||
typename Hole::iterator hit = hole.begin();
|
||
f = (*hit).first; i = (*hit).second;
|
||
ff = (* ++hit).first; ii = (*hit).second;
|
||
fn = (* ++hit).first; in = (*hit).second;
|
||
tds().create_face(f, i, ff, ii, fn, in);
|
||
continue;
|
||
}
|
||
|
||
// else find an edge with two finite vertices
|
||
// on the hole boundary
|
||
// and the new triangle adjacent to that edge
|
||
// cut the hole and push it back
|
||
|
||
// first, ensure that a neighboring face
|
||
// whose vertices on the hole boundary are finite
|
||
// is the first of the hole
|
||
while (1) {
|
||
ff = (hole.front()).first;
|
||
ii = (hole.front()).second;
|
||
if ( is_infinite(ff->vertex(cw(ii))) ||
|
||
is_infinite(ff->vertex(ccw(ii)))) {
|
||
hole.push_back(hole.front());
|
||
hole.pop_front();
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
// take the first neighboring face and pop it;
|
||
ff = (hole.front()).first;
|
||
ii = (hole.front()).second;
|
||
hole.pop_front();
|
||
|
||
Vertex_handle v0 = ff->vertex(cw(ii));
|
||
Vertex_handle v1 = ff->vertex(ccw(ii));
|
||
Vertex_handle v2 = infinite_vertex();
|
||
const Point &p0 = v0->point();
|
||
const Point &p1 = v1->point();
|
||
const Point *p2 = NULL; // Initialize to NULL to avoid warning.
|
||
|
||
typename Hole::iterator hdone = hole.end();
|
||
typename Hole::iterator hit = hole.begin();
|
||
typename Hole::iterator cut_after(hit);
|
||
|
||
// if tested vertex is c with respect to the vertex opposite
|
||
// to NULL neighbor,
|
||
// stop at the before last face;
|
||
hdone--;
|
||
for (; hit != hdone; ++hit) {
|
||
fn = hit->first;
|
||
in = hit->second;
|
||
Vertex_handle vv = fn->vertex(ccw(in));
|
||
if (is_infinite(vv)) {
|
||
if (is_infinite(v2))
|
||
cut_after = hit;
|
||
}
|
||
else { // vv is a finite vertex
|
||
const Point &p = vv->point();
|
||
if (coplanar_orientation(p0, p1, p) == COUNTERCLOCKWISE) {
|
||
if (is_infinite(v2) ||
|
||
remover.side_of_bounded_circle(p0, p1, *p2, p, true)
|
||
== ON_BOUNDED_SIDE) {
|
||
v2 = vv;
|
||
p2 = &p;
|
||
cut_after = hit;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// create new triangle and update adjacency relations
|
||
Cell_handle newf;
|
||
|
||
//update the hole and push back in the Hole_List stack
|
||
// if v2 belongs to the neighbor following or preceding *f
|
||
// the hole remain a single hole
|
||
// otherwise it is split in two holes
|
||
|
||
fn = (hole.front()).first;
|
||
in = (hole.front()).second;
|
||
if (fn->has_vertex(v2, i) && i == ccw(in)) {
|
||
newf = tds().create_face(ff, ii, fn, in);
|
||
hole.pop_front();
|
||
hole.push_front(Edge_2D(newf, 1));
|
||
hole_list.push_back(hole);
|
||
}
|
||
else{
|
||
fn = (hole.back()).first;
|
||
in = (hole.back()).second;
|
||
if (fn->has_vertex(v2, i) && i == cw(in)) {
|
||
newf = tds().create_face(fn, in, ff, ii);
|
||
hole.pop_back();
|
||
hole.push_back(Edge_2D(newf, 1));
|
||
hole_list.push_back(hole);
|
||
}
|
||
else{
|
||
// split the hole in two holes
|
||
newf = tds().create_face(ff, ii, v2);
|
||
Hole new_hole;
|
||
++cut_after;
|
||
while( hole.begin() != cut_after )
|
||
{
|
||
new_hole.push_back(hole.front());
|
||
hole.pop_front();
|
||
}
|
||
|
||
hole.push_front(Edge_2D(newf, 1));
|
||
new_hole.push_front(Edge_2D(newf, 0));
|
||
hole_list.push_back(hole);
|
||
hole_list.push_back(new_hole);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class VertexRemover, class OutputItCells >
|
||
void
|
||
Triangulation_3<Gt, Tds, Upm>::
|
||
fill_hole_2D(std::list<Edge_2D> & first_hole, VertexRemover &remover,
|
||
OutputItCells fit)
|
||
{
|
||
typedef std::list<Edge_2D> Hole;
|
||
|
||
std::vector<Hole> hole_list;
|
||
|
||
Cell_handle f, ff, fn;
|
||
int i, ii, in;
|
||
|
||
hole_list.push_back(first_hole);
|
||
|
||
while( ! hole_list.empty())
|
||
{
|
||
Hole hole = hole_list.back();
|
||
hole_list.pop_back();
|
||
|
||
// if the hole has only three edges, create the triangle
|
||
if (hole.size() == 3) {
|
||
typename Hole::iterator hit = hole.begin();
|
||
f = (*hit).first; i = (*hit).second;
|
||
ff = (* ++hit).first; ii = (*hit).second;
|
||
fn = (* ++hit).first; in = (*hit).second;
|
||
*fit++ = tds().create_face(f, i, ff, ii, fn, in);
|
||
continue;
|
||
}
|
||
|
||
// else find an edge with two finite vertices
|
||
// on the hole boundary
|
||
// and the new triangle adjacent to that edge
|
||
// cut the hole and push it back
|
||
|
||
// first, ensure that a neighboring face
|
||
// whose vertices on the hole boundary are finite
|
||
// is the first of the hole
|
||
while (1) {
|
||
ff = (hole.front()).first;
|
||
ii = (hole.front()).second;
|
||
if ( is_infinite(ff->vertex(cw(ii))) ||
|
||
is_infinite(ff->vertex(ccw(ii)))) {
|
||
hole.push_back(hole.front());
|
||
hole.pop_front();
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
// take the first neighboring face and pop it;
|
||
ff = (hole.front()).first;
|
||
ii = (hole.front()).second;
|
||
hole.pop_front();
|
||
|
||
Vertex_handle v0 = ff->vertex(cw(ii));
|
||
Vertex_handle v1 = ff->vertex(ccw(ii));
|
||
Vertex_handle v2 = infinite_vertex();
|
||
const Point &p0 = v0->point();
|
||
const Point &p1 = v1->point();
|
||
const Point *p2 = NULL; // Initialize to NULL to avoid warning.
|
||
|
||
typename Hole::iterator hdone = hole.end();
|
||
typename Hole::iterator hit = hole.begin();
|
||
typename Hole::iterator cut_after(hit);
|
||
|
||
// if tested vertex is c with respect to the vertex opposite
|
||
// to NULL neighbor,
|
||
// stop at the before last face;
|
||
hdone--;
|
||
for (; hit != hdone; ++hit) {
|
||
fn = hit->first;
|
||
in = hit->second;
|
||
Vertex_handle vv = fn->vertex(ccw(in));
|
||
if (is_infinite(vv)) {
|
||
if (is_infinite(v2))
|
||
cut_after = hit;
|
||
}
|
||
else { // vv is a finite vertex
|
||
const Point &p = vv->point();
|
||
if (coplanar_orientation(p0, p1, p) == COUNTERCLOCKWISE) {
|
||
if (is_infinite(v2) ||
|
||
remover.side_of_bounded_circle(p0, p1, *p2, p, true)
|
||
== ON_BOUNDED_SIDE) {
|
||
v2 = vv;
|
||
p2 = &p;
|
||
cut_after = hit;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// create new triangle and update adjacency relations
|
||
Cell_handle newf;
|
||
|
||
//update the hole and push back in the Hole_List stack
|
||
// if v2 belongs to the neighbor following or preceding *f
|
||
// the hole remain a single hole
|
||
// otherwise it is split in two holes
|
||
|
||
fn = (hole.front()).first;
|
||
in = (hole.front()).second;
|
||
if (fn->has_vertex(v2, i) && i == ccw(in)) {
|
||
newf = tds().create_face(ff, ii, fn, in);
|
||
hole.pop_front();
|
||
hole.push_front(Edge_2D(newf, 1));
|
||
hole_list.push_back(hole);
|
||
} else {
|
||
fn = (hole.back()).first;
|
||
in = (hole.back()).second;
|
||
if (fn->has_vertex(v2, i) && i == cw(in)) {
|
||
newf = tds().create_face(fn, in, ff, ii);
|
||
hole.pop_back();
|
||
hole.push_back(Edge_2D(newf, 1));
|
||
hole_list.push_back(hole);
|
||
} else {
|
||
// split the hole in two holes
|
||
newf = tds().create_face(ff, ii, v2);
|
||
Hole new_hole;
|
||
++cut_after;
|
||
while( hole.begin() != cut_after )
|
||
{
|
||
new_hole.push_back(hole.front());
|
||
hole.pop_front();
|
||
}
|
||
hole.push_front(Edge_2D(newf, 1));
|
||
new_hole.push_front(Edge_2D(newf, 0));
|
||
hole_list.push_back(hole);
|
||
hole_list.push_back(new_hole);
|
||
}
|
||
}
|
||
|
||
*fit++ = newf;
|
||
|
||
}
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
void
|
||
Triangulation_3<Gt,Tds,Upm>::
|
||
make_hole_3D( Vertex_handle v,
|
||
std::map<Vertex_triple,Facet>& outer_map,
|
||
std::vector<Cell_handle> & hole)
|
||
{
|
||
CGAL_triangulation_expensive_precondition( ! test_dim_down(v) );
|
||
|
||
incident_cells(v, std::back_inserter(hole));
|
||
|
||
for (typename std::vector<Cell_handle>::iterator cit = hole.begin(),
|
||
end = hole.end(); cit != end; ++cit) {
|
||
int indv = (*cit)->index(v);
|
||
Cell_handle opp_cit = (*cit)->neighbor( indv );
|
||
Facet f(opp_cit, opp_cit->index(*cit));
|
||
Vertex_triple vt = make_vertex_triple(f);
|
||
make_canonical(vt);
|
||
outer_map[vt] = f;
|
||
for (int i=0; i<4; i++)
|
||
if ( i != indv )
|
||
(*cit)->vertex(i)->set_cell(opp_cit);
|
||
}
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class VertexRemover >
|
||
VertexRemover&
|
||
Triangulation_3<Gt,Tds,Upm>::
|
||
remove_dim_down(Vertex_handle v, VertexRemover &remover)
|
||
{
|
||
CGAL_triangulation_precondition (dimension() >= 0);
|
||
|
||
// Collect all the hidden points.
|
||
for (All_cells_iterator ci = tds().raw_cells_begin(),
|
||
end = tds().raw_cells_end(); ci != end; ++ci)
|
||
remover.add_hidden_points(ci);
|
||
|
||
tds().remove_decrease_dimension(v, infinite_vertex());
|
||
|
||
// Now try to see if we need to re-orient.
|
||
if (dimension() == 2) {
|
||
Facet f = *finite_facets_begin();
|
||
if (coplanar_orientation(f.first->vertex(0)->point(),
|
||
f.first->vertex(1)->point(),
|
||
f.first->vertex(2)->point()) == NEGATIVE)
|
||
tds().reorient();
|
||
}
|
||
|
||
return remover;
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class VertexRemover >
|
||
VertexRemover&
|
||
Triangulation_3<Gt,Tds,Upm>::
|
||
remove_1D(Vertex_handle v, VertexRemover &remover)
|
||
{
|
||
CGAL_triangulation_precondition (dimension() == 1);
|
||
|
||
Cell_handle c1 = v->cell();
|
||
Cell_handle c2 = c1->neighbor(c1->index(v) == 0 ? 1 : 0);
|
||
remover.add_hidden_points(c1);
|
||
remover.add_hidden_points(c2);
|
||
|
||
tds().remove_from_maximal_dimension_simplex (v);
|
||
|
||
return remover;
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class VertexRemover >
|
||
VertexRemover&
|
||
Triangulation_3<Gt,Tds,Upm>::
|
||
remove_2D(Vertex_handle v, VertexRemover &remover)
|
||
{
|
||
CGAL_triangulation_precondition(dimension() == 2);
|
||
std::list<Edge_2D> hole;
|
||
make_hole_2D(v, hole, remover);
|
||
fill_hole_2D(hole, remover);
|
||
tds().delete_vertex(v);
|
||
return remover;
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class VertexRemover >
|
||
VertexRemover&
|
||
Triangulation_3<Gt,Tds,Upm>::
|
||
remove_3D(Vertex_handle v, VertexRemover &remover)
|
||
{
|
||
std::vector<Cell_handle> hole;
|
||
hole.reserve(64);
|
||
|
||
// Construct the set of vertex triples on the boundary
|
||
// with the facet just behind
|
||
typedef std::map<Vertex_triple,Facet> Vertex_triple_Facet_map;
|
||
Vertex_triple_Facet_map outer_map;
|
||
Vertex_triple_Facet_map inner_map;
|
||
|
||
make_hole_3D(v, outer_map, hole);
|
||
CGAL_assertion(remover.hidden_points_begin() ==
|
||
remover.hidden_points_end() );
|
||
|
||
// Output the hidden points.
|
||
for (typename std::vector<Cell_handle>::iterator
|
||
hi = hole.begin(), hend = hole.end(); hi != hend; ++hi)
|
||
remover.add_hidden_points(*hi);
|
||
|
||
bool inf = false;
|
||
unsigned int i;
|
||
// collect all vertices on the boundary
|
||
std::vector<Vertex_handle> vertices;
|
||
vertices.reserve(64);
|
||
|
||
adjacent_vertices(v, std::back_inserter(vertices));
|
||
|
||
// create a Delaunay triangulation of the points on the boundary
|
||
// and make a map from the vertices in remover.tmp towards the vertices
|
||
// in *this
|
||
|
||
Unique_hash_map<Vertex_handle,Vertex_handle> vmap;
|
||
Cell_handle ch = Cell_handle();
|
||
for(i=0; i < vertices.size(); i++){
|
||
if(! is_infinite(vertices[i])){
|
||
Vertex_handle vh = remover.tmp.insert(vertices[i]->point(), ch);
|
||
ch = vh->cell();
|
||
vmap[vh] = vertices[i];
|
||
}else {
|
||
inf = true;
|
||
}
|
||
}
|
||
|
||
if(remover.tmp.dimension()==2){
|
||
Vertex_handle fake_inf = remover.tmp.insert(v->point());
|
||
vmap[fake_inf] = infinite_vertex();
|
||
} else {
|
||
vmap[remover.tmp.infinite_vertex()] = infinite_vertex();
|
||
}
|
||
|
||
CGAL_triangulation_assertion(remover.tmp.dimension() == 3);
|
||
|
||
// Construct the set of vertex triples of remover.tmp
|
||
// We reorient the vertex triple so that it matches those from outer_map
|
||
// Also note that we use the vertices of *this, not of remover.tmp
|
||
|
||
if(inf){
|
||
for(All_cells_iterator it = remover.tmp.all_cells_begin(),
|
||
end = remover.tmp.all_cells_end(); it != end; ++it){
|
||
for(i=0; i < 4; i++){
|
||
Facet f = std::pair<Cell_handle,int>(it,i);
|
||
Vertex_triple vt_aux = make_vertex_triple(f);
|
||
Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
|
||
make_canonical(vt);
|
||
inner_map[vt]= f;
|
||
}
|
||
}
|
||
} else {
|
||
for(Finite_cells_iterator it = remover.tmp.finite_cells_begin(),
|
||
end = remover.tmp.finite_cells_end(); it != end; ++it){
|
||
for(i=0; i < 4; i++){
|
||
Facet f = std::pair<Cell_handle,int>(it,i);
|
||
Vertex_triple vt_aux = make_vertex_triple(f);
|
||
Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
|
||
make_canonical(vt);
|
||
inner_map[vt]= f;
|
||
}
|
||
}
|
||
}
|
||
// Grow inside the hole, by extending the surface
|
||
while(! outer_map.empty()){
|
||
typename Vertex_triple_Facet_map::iterator oit = outer_map.begin();
|
||
while(is_infinite(oit->first.first) ||
|
||
is_infinite(oit->first.second) ||
|
||
is_infinite(oit->first.third)){
|
||
++oit;
|
||
// otherwise the lookup in the inner_map fails
|
||
// because the infinite vertices are different
|
||
}
|
||
typename Vertex_triple_Facet_map::value_type o_vt_f_pair = *oit;
|
||
Cell_handle o_ch = o_vt_f_pair.second.first;
|
||
unsigned int o_i = o_vt_f_pair.second.second;
|
||
|
||
typename Vertex_triple_Facet_map::iterator iit =
|
||
inner_map.find(o_vt_f_pair.first);
|
||
CGAL_triangulation_assertion(iit != inner_map.end());
|
||
typename Vertex_triple_Facet_map::value_type i_vt_f_pair = *iit;
|
||
Cell_handle i_ch = i_vt_f_pair.second.first;
|
||
unsigned int i_i = i_vt_f_pair.second.second;
|
||
|
||
// create a new cell and glue it to the outer surface
|
||
Cell_handle new_ch = tds().create_cell();
|
||
new_ch->set_vertices(vmap[i_ch->vertex(0)], vmap[i_ch->vertex(1)],
|
||
vmap[i_ch->vertex(2)], vmap[i_ch->vertex(3)]);
|
||
|
||
o_ch->set_neighbor(o_i,new_ch);
|
||
new_ch->set_neighbor(i_i, o_ch);
|
||
|
||
// for the other faces check, if they can also be glued
|
||
for(i = 0; i < 4; i++){
|
||
if(i != i_i){
|
||
Facet f = std::pair<Cell_handle,int>(new_ch,i);
|
||
Vertex_triple vt = make_vertex_triple(f);
|
||
make_canonical(vt);
|
||
std::swap(vt.second,vt.third);
|
||
typename Vertex_triple_Facet_map::iterator oit2 = outer_map.find(vt);
|
||
if(oit2 == outer_map.end()){
|
||
std::swap(vt.second,vt.third);
|
||
outer_map[vt]= f;
|
||
} else {
|
||
// glue the faces
|
||
typename Vertex_triple_Facet_map::value_type o_vt_f_pair2 = *oit2;
|
||
Cell_handle o_ch2 = o_vt_f_pair2.second.first;
|
||
int o_i2 = o_vt_f_pair2.second.second;
|
||
o_ch2->set_neighbor(o_i2,new_ch);
|
||
new_ch->set_neighbor(i, o_ch2);
|
||
outer_map.erase(oit2);
|
||
}
|
||
}
|
||
}
|
||
outer_map.erase(oit);
|
||
}
|
||
tds().delete_vertex(v);
|
||
tds().delete_cells(hole.begin(), hole.end());
|
||
|
||
return remover;
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class VertexRemover >
|
||
void
|
||
Triangulation_3<Gt, Tds, Upm>::
|
||
remove(Vertex_handle v, VertexRemover &remover) {
|
||
CGAL_triangulation_precondition( v != Vertex_handle());
|
||
CGAL_triangulation_precondition( !is_infinite(v));
|
||
CGAL_triangulation_expensive_precondition( tds().is_vertex(v) );
|
||
|
||
if (test_dim_down (v)) {
|
||
remove_dim_down (v, remover);
|
||
}
|
||
else {
|
||
switch (dimension()) {
|
||
case 1: remove_1D (v, remover); break;
|
||
case 2: remove_2D (v, remover); break;
|
||
case 3: remove_3D (v, remover); break;
|
||
default:
|
||
CGAL_triangulation_assertion (false);
|
||
}
|
||
}
|
||
}
|
||
|
||
// The remove here uses the remover, but
|
||
// no function envolving hidden points
|
||
// will be used in this internal version
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class VertexRemover, class OutputItCells >
|
||
VertexRemover&
|
||
Triangulation_3<Gt, Tds, Upm>::
|
||
remove_dim_down(Vertex_handle v, VertexRemover &remover, OutputItCells fit) {
|
||
remove_dim_down(v, remover);
|
||
for(All_cells_iterator afi = tds().raw_cells_begin();
|
||
afi != tds().raw_cells_end();
|
||
afi++) *fit++ = afi;
|
||
return remover;
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class VertexRemover, class OutputItCells >
|
||
VertexRemover&
|
||
Triangulation_3<Gt, Tds, Upm>::
|
||
remove_1D(Vertex_handle v, VertexRemover &remover, OutputItCells fit) {
|
||
Point p = v->point();
|
||
remove_1D(v, remover);
|
||
*fit++ = locate(p);
|
||
return remover;
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class VertexRemover, class OutputItCells >
|
||
VertexRemover&
|
||
Triangulation_3<Gt, Tds, Upm>::
|
||
remove_2D(Vertex_handle v, VertexRemover &remover, OutputItCells fit) {
|
||
CGAL_triangulation_precondition(dimension() == 2);
|
||
std::list<Edge_2D> hole;
|
||
make_hole_2D(v, hole, remover);
|
||
fill_hole_2D(hole, remover, fit);
|
||
tds().delete_vertex(v);
|
||
return remover;
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class VertexRemover, class OutputItCells >
|
||
VertexRemover&
|
||
Triangulation_3<Gt, Tds, Upm>::
|
||
remove_3D(Vertex_handle v, VertexRemover &remover, OutputItCells fit) {
|
||
CGAL_triangulation_precondition(dimension() == 3);
|
||
|
||
std::vector<Cell_handle> hole;
|
||
hole.reserve(64);
|
||
|
||
// Construct the set of vertex triples on the boundary
|
||
// with the facet just behind
|
||
typedef std::map<Vertex_triple,Facet> Vertex_triple_Facet_map;
|
||
Vertex_triple_Facet_map outer_map;
|
||
Vertex_triple_Facet_map inner_map;
|
||
|
||
make_hole_3D(v, outer_map, hole);
|
||
|
||
CGAL_assertion(remover.hidden_points_begin() ==
|
||
remover.hidden_points_end() );
|
||
|
||
// Output the hidden points.
|
||
for (typename std::vector<Cell_handle>::iterator
|
||
hi = hole.begin(), hend = hole.end(); hi != hend; ++hi)
|
||
remover.add_hidden_points(*hi);
|
||
|
||
bool inf = false;
|
||
unsigned int i;
|
||
// collect all vertices on the boundary
|
||
std::vector<Vertex_handle> vertices;
|
||
vertices.reserve(64);
|
||
|
||
adjacent_vertices(v, std::back_inserter(vertices));
|
||
|
||
// create a Delaunay triangulation of the points on the boundary
|
||
// and make a map from the vertices in remover.tmp towards the vertices
|
||
// in *this
|
||
|
||
Unique_hash_map<Vertex_handle,Vertex_handle> vmap;
|
||
Cell_handle ch = Cell_handle();
|
||
for(i=0; i < vertices.size(); i++){
|
||
if(! is_infinite(vertices[i])){
|
||
Vertex_handle vh = remover.tmp.insert(vertices[i]->point(), ch);
|
||
ch = vh->cell();
|
||
vmap[vh] = vertices[i];
|
||
}else {
|
||
inf = true;
|
||
}
|
||
}
|
||
|
||
if(remover.tmp.dimension()==2){
|
||
Vertex_handle fake_inf = remover.tmp.insert(v->point());
|
||
vmap[fake_inf] = infinite_vertex();
|
||
} else {
|
||
vmap[remover.tmp.infinite_vertex()] = infinite_vertex();
|
||
}
|
||
|
||
CGAL_triangulation_assertion(remover.tmp.dimension() == 3);
|
||
|
||
// Construct the set of vertex triples of remover.tmp
|
||
// We reorient the vertex triple so that it matches those from outer_map
|
||
// Also note that we use the vertices of *this, not of remover.tmp
|
||
|
||
if(inf){
|
||
for(All_cells_iterator it = remover.tmp.all_cells_begin(),
|
||
end = remover.tmp.all_cells_end(); it != end; ++it)
|
||
{
|
||
for(i=0; i < 4; i++){
|
||
Facet f = std::pair<Cell_handle,int>(it,i);
|
||
Vertex_triple vt_aux = make_vertex_triple(f);
|
||
Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
|
||
make_canonical(vt);
|
||
inner_map[vt]= f;
|
||
}
|
||
}
|
||
} else {
|
||
for(Finite_cells_iterator it = remover.tmp.finite_cells_begin(),
|
||
end = remover.tmp.finite_cells_end(); it != end; ++it)
|
||
{
|
||
for(i=0; i < 4; i++){
|
||
Facet f = std::pair<Cell_handle,int>(it,i);
|
||
Vertex_triple vt_aux = make_vertex_triple(f);
|
||
Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
|
||
make_canonical(vt);
|
||
inner_map[vt]= f;
|
||
}
|
||
}
|
||
}
|
||
// Grow inside the hole, by extending the surface
|
||
while(! outer_map.empty()){
|
||
typename Vertex_triple_Facet_map::iterator oit = outer_map.begin();
|
||
while(is_infinite(oit->first.first) ||
|
||
is_infinite(oit->first.second) ||
|
||
is_infinite(oit->first.third)){
|
||
++oit;
|
||
// otherwise the lookup in the inner_map fails
|
||
// because the infinite vertices are different
|
||
}
|
||
typename Vertex_triple_Facet_map::value_type o_vt_f_pair = *oit;
|
||
Cell_handle o_ch = o_vt_f_pair.second.first;
|
||
unsigned int o_i = o_vt_f_pair.second.second;
|
||
|
||
typename Vertex_triple_Facet_map::iterator iit =
|
||
inner_map.find(o_vt_f_pair.first);
|
||
CGAL_triangulation_assertion(iit != inner_map.end());
|
||
typename Vertex_triple_Facet_map::value_type i_vt_f_pair = *iit;
|
||
Cell_handle i_ch = i_vt_f_pair.second.first;
|
||
unsigned int i_i = i_vt_f_pair.second.second;
|
||
|
||
// create a new cell and glue it to the outer surface
|
||
Cell_handle new_ch = tds().create_cell();
|
||
*fit++ = new_ch;
|
||
|
||
new_ch->set_vertices(vmap[i_ch->vertex(0)], vmap[i_ch->vertex(1)],
|
||
vmap[i_ch->vertex(2)], vmap[i_ch->vertex(3)]);
|
||
|
||
o_ch->set_neighbor(o_i,new_ch);
|
||
new_ch->set_neighbor(i_i, o_ch);
|
||
|
||
// for the other faces check, if they can also be glued
|
||
for(i = 0; i < 4; i++){
|
||
if(i != i_i){
|
||
Facet f = std::pair<Cell_handle,int>(new_ch,i);
|
||
Vertex_triple vt = make_vertex_triple(f);
|
||
make_canonical(vt);
|
||
std::swap(vt.second,vt.third);
|
||
typename Vertex_triple_Facet_map::iterator oit2 = outer_map.find(vt);
|
||
if(oit2 == outer_map.end()){
|
||
std::swap(vt.second,vt.third);
|
||
outer_map[vt]= f;
|
||
} else {
|
||
// glue the faces
|
||
typename Vertex_triple_Facet_map::value_type o_vt_f_pair2 = *oit2;
|
||
Cell_handle o_ch2 = o_vt_f_pair2.second.first;
|
||
int o_i2 = o_vt_f_pair2.second.second;
|
||
o_ch2->set_neighbor(o_i2,new_ch);
|
||
new_ch->set_neighbor(i, o_ch2);
|
||
outer_map.erase(oit2);
|
||
}
|
||
}
|
||
}
|
||
outer_map.erase(oit);
|
||
}
|
||
tds().delete_vertex(v);
|
||
tds().delete_cells(hole.begin(), hole.end());
|
||
|
||
return remover;
|
||
}
|
||
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class VertexRemover, class OutputItCells >
|
||
void
|
||
Triangulation_3<Gt, Tds, Upm>::
|
||
remove_and_give_new_cells(Vertex_handle v, VertexRemover &remover,
|
||
OutputItCells fit) {
|
||
CGAL_triangulation_precondition( v != Vertex_handle());
|
||
CGAL_triangulation_precondition( !is_infinite(v));
|
||
CGAL_triangulation_expensive_precondition( tds().is_vertex(v) );
|
||
|
||
if (test_dim_down (v)) {
|
||
remove_dim_down (v, remover, fit);
|
||
}
|
||
else {
|
||
switch (dimension()) {
|
||
case 1: remove_1D (v, remover, fit); break;
|
||
case 2: remove_2D (v, remover, fit); break;
|
||
case 3: remove_3D (v, remover, fit); break;
|
||
default:
|
||
CGAL_triangulation_assertion (false);
|
||
}
|
||
}
|
||
}
|
||
|
||
// The VertexInserter is needed so as to
|
||
// allow us the usage of the insertion method
|
||
// from the particular triangulation
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class VertexRemover, class VertexInserter >
|
||
typename Triangulation_3<Gt,Tds,Upm>::Vertex_handle
|
||
Triangulation_3<Gt,Tds,Upm>::
|
||
move_if_no_collision(Vertex_handle v, const Point &p,
|
||
VertexRemover &remover, VertexInserter &inserter) {
|
||
CGAL_assertion(remover.hidden_points_begin() ==
|
||
remover.hidden_points_end() );
|
||
CGAL_triangulation_precondition(!is_infinite(v));
|
||
if(v->point() == p) return v;
|
||
const int dim = dimension();
|
||
|
||
// If displacements are known to be small
|
||
// we might want to optimize by checking
|
||
// whether there is a topological change
|
||
// or not before.
|
||
// In this version this will not be put inside this method
|
||
// because it is for general purposes,
|
||
// and remaining Delaunay after motion is a bit too restrictive.
|
||
// In the filtered version optimized for displacements
|
||
// it will be used as an a priori.
|
||
// However, a non-fully optimized but good version of
|
||
// is_delaunay_after_displacement is provided as an internal method of
|
||
// Delaunay_triangulation_3 (see the class for more details).
|
||
|
||
Locate_type lt;
|
||
int li, lj;
|
||
Cell_handle loc = locate(p, lt, li, lj, v->cell());
|
||
|
||
if(lt == VERTEX) return loc->vertex(li);
|
||
|
||
if(dim == 0) {
|
||
v->set_point(p);
|
||
return v;
|
||
}
|
||
|
||
size_type n_vertices = tds().number_of_vertices();
|
||
|
||
if((lt == OUTSIDE_AFFINE_HULL) && (dim == 1) && (n_vertices == 3)) {
|
||
v->set_point(p);
|
||
return v;
|
||
}
|
||
|
||
if((lt == OUTSIDE_AFFINE_HULL) && (dim == 2) && (n_vertices == 4)) {
|
||
v->set_point(p);
|
||
return v;
|
||
}
|
||
|
||
if((lt != OUTSIDE_AFFINE_HULL) && (dim == 1)) {
|
||
|
||
if(loc->has_vertex(v)) {
|
||
v->set_point(p);
|
||
} else {
|
||
Vertex_handle inserted = insert(p, lt, loc, li, lj);
|
||
Cell_handle f = v->cell();
|
||
int i = f->index(v);
|
||
if (i==0) {f = f->neighbor(1);}
|
||
CGAL_triangulation_assertion(f->index(v) == 1);
|
||
Cell_handle g= f->neighbor(0);
|
||
f->set_vertex(1, g->vertex(1));
|
||
f->set_neighbor(0,g->neighbor(0));
|
||
g->neighbor(0)->set_neighbor(1,f);
|
||
g->vertex(1)->set_cell(f);
|
||
tds().delete_cell(g);
|
||
Cell_handle f_ins = inserted->cell();
|
||
i = f_ins->index(inserted);
|
||
if (i==0) {f_ins = f_ins->neighbor(1);}
|
||
CGAL_triangulation_assertion(f_ins->index(inserted) == 1);
|
||
Cell_handle g_ins = f_ins->neighbor(0);
|
||
f_ins->set_vertex(1, v);
|
||
g_ins->set_vertex(0, v);
|
||
v->set_point(p);
|
||
v->set_cell(inserted->cell());
|
||
tds().delete_vertex(inserted);
|
||
}
|
||
return v;
|
||
}
|
||
|
||
bool dim_down = test_dim_down(v);
|
||
|
||
if((lt != OUTSIDE_AFFINE_HULL) && dim_down && (dim == 2)) {
|
||
// verify if p and two static vertices are collinear in this case
|
||
int iinf;
|
||
Cell_handle finf = infinite_vertex()->cell(), fdone;
|
||
fdone = finf;
|
||
do {
|
||
iinf = finf->index(infinite_vertex());
|
||
if(!finf->has_vertex(v)) break;
|
||
finf = finf->neighbor((iinf+1)%3);
|
||
} while(finf != fdone);
|
||
iinf = ~iinf;
|
||
if(this->collinear(finf->vertex(iinf&1)->point(),
|
||
finf->vertex(iinf&2)->point(),
|
||
p))
|
||
{
|
||
v->set_point(p);
|
||
_tds.decrease_dimension(loc, loc->index(v));
|
||
return v;
|
||
}
|
||
}
|
||
|
||
if(((dim == 2) && (lt != OUTSIDE_AFFINE_HULL)) ||
|
||
((lt == OUTSIDE_AFFINE_HULL) && (dim == 1)))
|
||
{
|
||
|
||
// This is insert must be from Delaunay (or the particular trian.)
|
||
// not Triangulation_3 !
|
||
Vertex_handle inserted = inserter.insert(p, lt, loc, li, lj);
|
||
|
||
std::list<Edge_2D> hole;
|
||
make_hole_2D(v, hole, remover);
|
||
fill_hole_2D(hole, remover);
|
||
|
||
// fixing pointer
|
||
Cell_handle fc = inserted->cell(), done(fc);
|
||
std::vector<Cell_handle> faces_pt;
|
||
faces_pt.reserve(16);
|
||
do {
|
||
faces_pt.push_back(fc);
|
||
fc = fc->neighbor((fc->index(inserted) + 1)%3);
|
||
} while(fc != done);
|
||
std::size_t ss = faces_pt.size();
|
||
for(std::size_t k=0; k<ss; k++)
|
||
{
|
||
Cell_handle f = faces_pt[k];
|
||
int i = f->index(inserted);
|
||
f->set_vertex(i, v);
|
||
}
|
||
v->set_point(p);
|
||
v->set_cell(inserted->cell());
|
||
|
||
tds().delete_vertex(inserted);
|
||
|
||
return v;
|
||
}
|
||
|
||
if((lt != OUTSIDE_AFFINE_HULL) && dim_down && (dim == 3)) {
|
||
// verify if p and two static vertices are collinear in this case
|
||
std::vector<Cell_handle> ics;
|
||
incident_cells(infinite_vertex(), std::back_inserter(ics));
|
||
std::size_t size = ics.size();
|
||
Cell_handle finf;
|
||
for (std::size_t i=0; i<size; i++) {
|
||
finf = ics[i];
|
||
if(!finf->has_vertex(v)) break;
|
||
}
|
||
int iinf = finf->index(infinite_vertex());
|
||
if(remover.tmp.coplanar(finf->vertex((iinf+1)&3)->point(),
|
||
finf->vertex((iinf+2)&3)->point(),
|
||
finf->vertex((iinf+3)&3)->point(),
|
||
p))
|
||
{
|
||
v->set_point(p);
|
||
_tds.decrease_dimension(loc, loc->index(v));
|
||
Facet f = *finite_facets_begin();
|
||
if (coplanar_orientation(f.first->vertex(0)->point(),
|
||
f.first->vertex(1)->point(),
|
||
f.first->vertex(2)->point()) == NEGATIVE)
|
||
tds().reorient();
|
||
restore_edges_after_decrease_dimension(v, remover,inserter);
|
||
return v;
|
||
}
|
||
}
|
||
|
||
// This is insert must be from Delaunay (or the particular trian.)
|
||
// not Triangulation_3 !
|
||
Vertex_handle inserted = inserter.insert(p, lt, loc, li, lj);
|
||
|
||
std::vector<Cell_handle> hole;
|
||
hole.reserve(64);
|
||
|
||
// Construct the set of vertex triples on the boundary
|
||
// with the facet just behind
|
||
typedef std::map<Vertex_triple,Facet> Vertex_triple_Facet_map;
|
||
Vertex_triple_Facet_map outer_map;
|
||
Vertex_triple_Facet_map inner_map;
|
||
|
||
make_hole_3D(v, outer_map, hole);
|
||
|
||
CGAL_assertion(remover.hidden_points_begin() ==
|
||
remover.hidden_points_end() );
|
||
|
||
// Output the hidden points.
|
||
for (typename std::vector<Cell_handle>::iterator
|
||
hi = hole.begin(), hend = hole.end(); hi != hend; ++hi)
|
||
remover.add_hidden_points(*hi);
|
||
|
||
bool inf = false;
|
||
unsigned int i;
|
||
// collect all vertices on the boundary
|
||
std::vector<Vertex_handle> vertices;
|
||
vertices.reserve(64);
|
||
|
||
adjacent_vertices(v, std::back_inserter(vertices));
|
||
|
||
// create a Delaunay triangulation of the points on the boundary
|
||
// and make a map from the vertices in remover.tmp towards the vertices
|
||
// in *this
|
||
|
||
Unique_hash_map<Vertex_handle,Vertex_handle> vmap;
|
||
Cell_handle ch = Cell_handle();
|
||
for(i=0; i < vertices.size(); i++){
|
||
if(! is_infinite(vertices[i])){
|
||
Vertex_handle vh = remover.tmp.insert(vertices[i]->point(), ch);
|
||
ch = vh->cell();
|
||
vmap[vh] = vertices[i];
|
||
}else {
|
||
inf = true;
|
||
}
|
||
}
|
||
|
||
if(remover.tmp.dimension()==2){
|
||
Vertex_handle fake_inf = remover.tmp.insert(v->point());
|
||
vmap[fake_inf] = infinite_vertex();
|
||
} else {
|
||
vmap[remover.tmp.infinite_vertex()] = infinite_vertex();
|
||
}
|
||
|
||
CGAL_triangulation_assertion(remover.tmp.dimension() == 3);
|
||
|
||
// Construct the set of vertex triples of remover.tmp
|
||
// We reorient the vertex triple so that it matches those from outer_map
|
||
// Also note that we use the vertices of *this, not of remover.tmp
|
||
|
||
if(inf){
|
||
for(All_cells_iterator it = remover.tmp.all_cells_begin(),
|
||
end = remover.tmp.all_cells_end(); it != end; ++it){
|
||
for(i=0; i < 4; i++){
|
||
Facet f = std::pair<Cell_handle,int>(it,i);
|
||
Vertex_triple vt_aux = make_vertex_triple(f);
|
||
Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
|
||
make_canonical(vt);
|
||
inner_map[vt]= f;
|
||
}
|
||
}
|
||
} else {
|
||
for(Finite_cells_iterator it = remover.tmp.finite_cells_begin(),
|
||
end = remover.tmp.finite_cells_end(); it != end; ++it){
|
||
for(i=0; i < 4; i++){
|
||
Facet f = std::pair<Cell_handle,int>(it,i);
|
||
Vertex_triple vt_aux = make_vertex_triple(f);
|
||
Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
|
||
make_canonical(vt);
|
||
inner_map[vt]= f;
|
||
}
|
||
}
|
||
}
|
||
// Grow inside the hole, by extending the surface
|
||
while(! outer_map.empty()){
|
||
typename Vertex_triple_Facet_map::iterator oit = outer_map.begin();
|
||
while(is_infinite(oit->first.first) ||
|
||
is_infinite(oit->first.second) ||
|
||
is_infinite(oit->first.third)){
|
||
++oit;
|
||
// otherwise the lookup in the inner_map fails
|
||
// because the infinite vertices are different
|
||
}
|
||
typename Vertex_triple_Facet_map::value_type o_vt_f_pair = *oit;
|
||
Cell_handle o_ch = o_vt_f_pair.second.first;
|
||
unsigned int o_i = o_vt_f_pair.second.second;
|
||
|
||
typename Vertex_triple_Facet_map::iterator iit =
|
||
inner_map.find(o_vt_f_pair.first);
|
||
CGAL_triangulation_assertion(iit != inner_map.end());
|
||
typename Vertex_triple_Facet_map::value_type i_vt_f_pair = *iit;
|
||
Cell_handle i_ch = i_vt_f_pair.second.first;
|
||
unsigned int i_i = i_vt_f_pair.second.second;
|
||
|
||
// create a new cell and glue it to the outer surface
|
||
Cell_handle new_ch = tds().create_cell();
|
||
|
||
new_ch->set_vertices(vmap[i_ch->vertex(0)], vmap[i_ch->vertex(1)],
|
||
vmap[i_ch->vertex(2)], vmap[i_ch->vertex(3)]);
|
||
|
||
o_ch->set_neighbor(o_i,new_ch);
|
||
new_ch->set_neighbor(i_i, o_ch);
|
||
|
||
// for the other faces check, if they can also be glued
|
||
for(i = 0; i < 4; i++){
|
||
if(i != i_i){
|
||
Facet f = std::pair<Cell_handle,int>(new_ch,i);
|
||
Vertex_triple vt = make_vertex_triple(f);
|
||
make_canonical(vt);
|
||
std::swap(vt.second,vt.third);
|
||
typename Vertex_triple_Facet_map::iterator oit2 = outer_map.find(vt);
|
||
if(oit2 == outer_map.end()){
|
||
std::swap(vt.second,vt.third);
|
||
outer_map[vt]= f;
|
||
} else {
|
||
// glue the faces
|
||
typename Vertex_triple_Facet_map::value_type o_vt_f_pair2 = *oit2;
|
||
Cell_handle o_ch2 = o_vt_f_pair2.second.first;
|
||
int o_i2 = o_vt_f_pair2.second.second;
|
||
o_ch2->set_neighbor(o_i2,new_ch);
|
||
new_ch->set_neighbor(i, o_ch2);
|
||
outer_map.erase(oit2);
|
||
}
|
||
}
|
||
}
|
||
outer_map.erase(oit);
|
||
}
|
||
|
||
// fixing pointer
|
||
std::vector<Cell_handle> cells_pt;
|
||
cells_pt.reserve(64);
|
||
incident_cells(inserted, std::back_inserter(cells_pt));
|
||
std::size_t size = cells_pt.size();
|
||
for(std::size_t i=0; i<size; i++) {
|
||
Cell_handle c = cells_pt[i];
|
||
c->set_vertex(c->index(inserted), v);
|
||
}
|
||
v->set_point(p);
|
||
v->set_cell(inserted->cell());
|
||
tds().delete_vertex(inserted);
|
||
tds().delete_cells(hole.begin(), hole.end());
|
||
return v;
|
||
} // end of Vertex_handle
|
||
// Triangulation_3<Gt,Tds,Upm>::
|
||
// move_if_no_collision(Vertex_handle,Point, VertexRemover, VertexInserter)
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class VertexRemover, class VertexInserter >
|
||
typename Triangulation_3<Gt,Tds,Upm>::Vertex_handle
|
||
Triangulation_3<Gt,Tds,Upm>::
|
||
move(Vertex_handle v, const Point &p,
|
||
VertexRemover &remover, VertexInserter &inserter) {
|
||
CGAL_assertion(remover.hidden_points_begin() ==
|
||
remover.hidden_points_end() );
|
||
CGAL_triangulation_precondition(!is_infinite(v));
|
||
if(v->point() == p) return v;
|
||
Vertex_handle w = move_if_no_collision(v,p,remover,inserter);
|
||
if(w != v) {
|
||
remove(v, remover);
|
||
return w;
|
||
}
|
||
return v;
|
||
}
|
||
|
||
// The VertexInserter is needed so as to
|
||
// allow us the usage of the insertion method
|
||
// from the particular triangulation
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class VertexRemover, class VertexInserter, class OutputItCells >
|
||
typename Triangulation_3<Gt,Tds,Upm>::Vertex_handle
|
||
Triangulation_3<Gt,Tds,Upm>::
|
||
move_if_no_collision_and_give_new_cells(Vertex_handle v, const Point &p,
|
||
VertexRemover &remover, VertexInserter &inserter, OutputItCells fit) {
|
||
CGAL_assertion(remover.hidden_points_begin() ==
|
||
remover.hidden_points_end() );
|
||
CGAL_triangulation_precondition(!is_infinite(v));
|
||
if(v->point() == p) return v;
|
||
const int dim = dimension();
|
||
|
||
// If displacements are known to be small
|
||
// we might want to optimize by checking
|
||
// whether there is a topological change
|
||
// or not before.
|
||
// In this version this will not be put inside this method
|
||
// because it is for general purposes,
|
||
// and remaining Delaunay after motion is a bit too restrictive.
|
||
// In the filtered version optimized for displacements
|
||
// it will be used as an a priori.
|
||
// However, a non-fully optimized but good version of
|
||
// is_delaunay_after_displacement is provided as an internal method of
|
||
// Delaunay_triangulation_3 (see the class for more details).
|
||
|
||
Locate_type lt;
|
||
int li, lj;
|
||
Cell_handle loc = locate(p, lt, li, lj, v->cell());
|
||
|
||
if(lt == VERTEX) return loc->vertex(li);
|
||
|
||
if(dim == 0) {
|
||
v->set_point(p);
|
||
return v;
|
||
}
|
||
|
||
int n_vertices = tds().number_of_vertices();
|
||
|
||
if((lt == OUTSIDE_AFFINE_HULL) && (dim == 1) && (n_vertices == 3)) {
|
||
v->set_point(p);
|
||
for(All_cells_iterator afi = tds().raw_cells_begin();
|
||
afi != tds().raw_cells_end();
|
||
afi++) *fit++ = afi;
|
||
return v;
|
||
}
|
||
|
||
if((lt == OUTSIDE_AFFINE_HULL) && (dim == 2) && (n_vertices == 4)) {
|
||
v->set_point(p);
|
||
for(All_cells_iterator afi = tds().raw_cells_begin();
|
||
afi != tds().raw_cells_end();
|
||
afi++) *fit++ = afi;
|
||
return v;
|
||
}
|
||
|
||
if((lt != OUTSIDE_AFFINE_HULL) && (dim == 1)) {
|
||
if(loc->has_vertex(v)) {
|
||
v->set_point(p);
|
||
} else {
|
||
Vertex_handle inserted = insert(p, lt, loc, li, lj);
|
||
Cell_handle f = v->cell();
|
||
int i = f->index(v);
|
||
if (i==0) {f = f->neighbor(1);}
|
||
CGAL_triangulation_assertion(f->index(v) == 1);
|
||
Cell_handle g= f->neighbor(0);
|
||
f->set_vertex(1, g->vertex(1));
|
||
f->set_neighbor(0,g->neighbor(0));
|
||
g->neighbor(0)->set_neighbor(1,f);
|
||
g->vertex(1)->set_cell(f);
|
||
tds().delete_cell(g);
|
||
*fit++ = f;
|
||
Cell_handle f_ins = inserted->cell();
|
||
i = f_ins->index(inserted);
|
||
if (i==0) {f_ins = f_ins->neighbor(1);}
|
||
CGAL_triangulation_assertion(f_ins->index(inserted) == 1);
|
||
Cell_handle g_ins = f_ins->neighbor(0);
|
||
f_ins->set_vertex(1, v);
|
||
g_ins->set_vertex(0, v);
|
||
v->set_point(p);
|
||
v->set_cell(inserted->cell());
|
||
tds().delete_vertex(inserted);
|
||
}
|
||
*fit++ = v->cell();
|
||
if(v->cell()->neighbor(0)->has_vertex(v))
|
||
*fit++ = v->cell()->neighbor(0);
|
||
if(v->cell()->neighbor(1)->has_vertex(v))
|
||
*fit++ = v->cell()->neighbor(1);
|
||
return v;
|
||
}
|
||
|
||
bool dim_down = test_dim_down(v);
|
||
|
||
if((lt != OUTSIDE_AFFINE_HULL) && dim_down && (dim == 2)) {
|
||
// verify if p and two static vertices are collinear in this case
|
||
int iinf;
|
||
Cell_handle finf = infinite_vertex()->cell(), fdone;
|
||
fdone = finf;
|
||
do {
|
||
iinf = finf->index(infinite_vertex());
|
||
if(!finf->has_vertex(v)) break;
|
||
finf = finf->neighbor((iinf+1)%3);
|
||
} while(finf != fdone);
|
||
iinf = ~iinf;
|
||
if(this->collinear(finf->vertex(iinf&1)->point(),
|
||
finf->vertex(iinf&2)->point(),
|
||
p))
|
||
{
|
||
v->set_point(p);
|
||
_tds.decrease_dimension(loc, loc->index(v));
|
||
for(All_cells_iterator afi = tds().raw_cells_begin();
|
||
afi != tds().raw_cells_end();
|
||
afi++) *fit++ = afi;
|
||
return v;
|
||
}
|
||
}
|
||
|
||
if(((dim == 2) && (lt != OUTSIDE_AFFINE_HULL)) ||
|
||
((lt == OUTSIDE_AFFINE_HULL) && (dim == 1)))
|
||
{
|
||
|
||
std::set<Cell_handle> cells_set;
|
||
// This is insert must be from Delaunay (or the particular trian.)
|
||
// not Triangulation_3 !
|
||
Vertex_handle inserted = inserter.insert(p, lt, loc, li, lj);
|
||
Cell_handle c = inserted->cell(), end = c;
|
||
do {
|
||
cells_set.insert(c);
|
||
int i = c->index(inserted);
|
||
c = c->neighbor((i+1)%3);
|
||
} while(c != end);
|
||
|
||
std::list<Edge_2D> hole;
|
||
make_hole_2D(v, hole, remover, cells_set);
|
||
fill_hole_2D(hole, remover, fit);
|
||
|
||
// fixing pointer
|
||
Cell_handle fc = inserted->cell(), done(fc);
|
||
std::vector<Cell_handle> faces_pt;
|
||
faces_pt.reserve(16);
|
||
do {
|
||
faces_pt.push_back(fc);
|
||
fc = fc->neighbor((fc->index(inserted) + 1)%3);
|
||
} while(fc != done);
|
||
int ss = faces_pt.size();
|
||
for(int k=0; k<ss; k++)
|
||
{
|
||
Cell_handle f = faces_pt[k];
|
||
int i = f->index(inserted);
|
||
f->set_vertex(i, v);
|
||
}
|
||
v->set_point(p);
|
||
v->set_cell(inserted->cell());
|
||
|
||
tds().delete_vertex(inserted);
|
||
|
||
for(typename std::set<Cell_handle>::const_iterator ib = cells_set.begin(),
|
||
iend = cells_set.end(); ib != iend; ib++) *fit++ = *ib;
|
||
|
||
return v;
|
||
}
|
||
|
||
if((lt != OUTSIDE_AFFINE_HULL) && dim_down && (dim == 3)) {
|
||
// verify if p and two static vertices are collinear in this case
|
||
std::vector<Cell_handle> ics;
|
||
incident_cells(infinite_vertex(), std::back_inserter(ics));
|
||
int size = ics.size();
|
||
Cell_handle finf;
|
||
for (int i=0; i<size; i++) {
|
||
finf = ics[i];
|
||
if(!finf->has_vertex(v)) break;
|
||
}
|
||
int iinf = finf->index(infinite_vertex());
|
||
if(remover.tmp.coplanar(finf->vertex((iinf+1)&3)->point(),
|
||
finf->vertex((iinf+2)&3)->point(),
|
||
finf->vertex((iinf+3)&3)->point(),
|
||
p))
|
||
{
|
||
v->set_point(p);
|
||
_tds.decrease_dimension(loc, loc->index(v));
|
||
Facet f = *finite_facets_begin();
|
||
if (coplanar_orientation(f.first->vertex(0)->point(),
|
||
f.first->vertex(1)->point(),
|
||
f.first->vertex(2)->point()) == NEGATIVE)
|
||
tds().reorient();
|
||
restore_edges_after_decrease_dimension(v, remover,inserter);
|
||
for(All_cells_iterator afi = tds().raw_cells_begin();
|
||
afi != tds().raw_cells_end();
|
||
afi++) *fit++ = afi;
|
||
return v;
|
||
}
|
||
}
|
||
|
||
std::set<Cell_handle> cells_set;
|
||
|
||
// This is insert must be from Delaunay (or the particular trian.)
|
||
// not Triangulation_3 !
|
||
Vertex_handle inserted = inserter.insert(p, lt, loc, li, lj);
|
||
|
||
std::vector<Cell_handle> cells_tmp;
|
||
cells_tmp.reserve(64);
|
||
incident_cells(inserted, std::back_inserter(cells_tmp));
|
||
int size = cells_tmp.size();
|
||
for(int i=0; i<size; i++) {
|
||
cells_set.insert(cells_tmp[i]);
|
||
}
|
||
|
||
std::vector<Cell_handle> hole;
|
||
hole.reserve(64);
|
||
|
||
// Construct the set of vertex triples on the boundary
|
||
// with the facet just behind
|
||
typedef std::map<Vertex_triple,Facet> Vertex_triple_Facet_map;
|
||
Vertex_triple_Facet_map outer_map;
|
||
Vertex_triple_Facet_map inner_map;
|
||
|
||
make_hole_3D(v, outer_map, hole);
|
||
|
||
for(typename std::vector<Cell_handle>::const_iterator ib = hole.begin(),
|
||
iend = hole.end(); ib != iend; ib++) cells_set.erase(*ib);
|
||
|
||
CGAL_assertion(remover.hidden_points_begin() ==
|
||
remover.hidden_points_end() );
|
||
|
||
// Output the hidden points.
|
||
for (typename std::vector<Cell_handle>::iterator
|
||
hi = hole.begin(), hend = hole.end(); hi != hend; ++hi)
|
||
remover.add_hidden_points(*hi);
|
||
|
||
bool inf = false;
|
||
unsigned int i;
|
||
// collect all vertices on the boundary
|
||
std::vector<Vertex_handle> vertices;
|
||
vertices.reserve(64);
|
||
|
||
adjacent_vertices(v, std::back_inserter(vertices));
|
||
|
||
// create a Delaunay triangulation of the points on the boundary
|
||
// and make a map from the vertices in remover.tmp towards the vertices
|
||
// in *this
|
||
|
||
Unique_hash_map<Vertex_handle,Vertex_handle> vmap;
|
||
Cell_handle ch = Cell_handle();
|
||
for(i=0; i < vertices.size(); i++){
|
||
if(! is_infinite(vertices[i])){
|
||
Vertex_handle vh = remover.tmp.insert(vertices[i]->point(), ch);
|
||
ch = vh->cell();
|
||
vmap[vh] = vertices[i];
|
||
}else {
|
||
inf = true;
|
||
}
|
||
}
|
||
|
||
if(remover.tmp.dimension()==2){
|
||
Vertex_handle fake_inf = remover.tmp.insert(v->point());
|
||
vmap[fake_inf] = infinite_vertex();
|
||
} else {
|
||
vmap[remover.tmp.infinite_vertex()] = infinite_vertex();
|
||
}
|
||
|
||
CGAL_triangulation_assertion(remover.tmp.dimension() == 3);
|
||
|
||
// Construct the set of vertex triples of remover.tmp
|
||
// We reorient the vertex triple so that it matches those from outer_map
|
||
// Also note that we use the vertices of *this, not of remover.tmp
|
||
|
||
if(inf){
|
||
for(All_cells_iterator it = remover.tmp.all_cells_begin(),
|
||
end = remover.tmp.all_cells_end(); it != end; ++it){
|
||
for(i=0; i < 4; i++){
|
||
Facet f = std::pair<Cell_handle,int>(it,i);
|
||
Vertex_triple vt_aux = make_vertex_triple(f);
|
||
Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
|
||
make_canonical(vt);
|
||
inner_map[vt]= f;
|
||
}
|
||
}
|
||
} else {
|
||
for(Finite_cells_iterator it = remover.tmp.finite_cells_begin(),
|
||
end = remover.tmp.finite_cells_end(); it != end; ++it){
|
||
for(i=0; i < 4; i++){
|
||
Facet f = std::pair<Cell_handle,int>(it,i);
|
||
Vertex_triple vt_aux = make_vertex_triple(f);
|
||
Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
|
||
make_canonical(vt);
|
||
inner_map[vt]= f;
|
||
}
|
||
}
|
||
}
|
||
// Grow inside the hole, by extending the surface
|
||
while(! outer_map.empty()){
|
||
typename Vertex_triple_Facet_map::iterator oit = outer_map.begin();
|
||
while(is_infinite(oit->first.first) ||
|
||
is_infinite(oit->first.second) ||
|
||
is_infinite(oit->first.third)){
|
||
++oit;
|
||
// otherwise the lookup in the inner_map fails
|
||
// because the infinite vertices are different
|
||
}
|
||
typename Vertex_triple_Facet_map::value_type o_vt_f_pair = *oit;
|
||
Cell_handle o_ch = o_vt_f_pair.second.first;
|
||
unsigned int o_i = o_vt_f_pair.second.second;
|
||
|
||
typename Vertex_triple_Facet_map::iterator iit =
|
||
inner_map.find(o_vt_f_pair.first);
|
||
CGAL_triangulation_assertion(iit != inner_map.end());
|
||
typename Vertex_triple_Facet_map::value_type i_vt_f_pair = *iit;
|
||
Cell_handle i_ch = i_vt_f_pair.second.first;
|
||
unsigned int i_i = i_vt_f_pair.second.second;
|
||
|
||
// create a new cell and glue it to the outer surface
|
||
Cell_handle new_ch = tds().create_cell();
|
||
*fit++ = new_ch;
|
||
|
||
new_ch->set_vertices(vmap[i_ch->vertex(0)], vmap[i_ch->vertex(1)],
|
||
vmap[i_ch->vertex(2)], vmap[i_ch->vertex(3)]);
|
||
|
||
o_ch->set_neighbor(o_i,new_ch);
|
||
new_ch->set_neighbor(i_i, o_ch);
|
||
|
||
// for the other faces check, if they can also be glued
|
||
for(i = 0; i < 4; i++){
|
||
if(i != i_i){
|
||
Facet f = std::pair<Cell_handle,int>(new_ch,i);
|
||
Vertex_triple vt = make_vertex_triple(f);
|
||
make_canonical(vt);
|
||
std::swap(vt.second,vt.third);
|
||
typename Vertex_triple_Facet_map::iterator oit2 = outer_map.find(vt);
|
||
if(oit2 == outer_map.end()){
|
||
std::swap(vt.second,vt.third);
|
||
outer_map[vt]= f;
|
||
} else {
|
||
// glue the faces
|
||
typename Vertex_triple_Facet_map::value_type o_vt_f_pair2 = *oit2;
|
||
Cell_handle o_ch2 = o_vt_f_pair2.second.first;
|
||
int o_i2 = o_vt_f_pair2.second.second;
|
||
o_ch2->set_neighbor(o_i2,new_ch);
|
||
new_ch->set_neighbor(i, o_ch2);
|
||
outer_map.erase(oit2);
|
||
}
|
||
}
|
||
}
|
||
outer_map.erase(oit);
|
||
}
|
||
|
||
// fixing pointer
|
||
std::vector<Cell_handle> cells_pt;
|
||
cells_pt.reserve(64);
|
||
incident_cells(inserted, std::back_inserter(cells_pt));
|
||
size = cells_pt.size();
|
||
for(int i=0; i<size; i++) {
|
||
Cell_handle c = cells_pt[i];
|
||
c->set_vertex(c->index(inserted), v);
|
||
}
|
||
v->set_point(p);
|
||
v->set_cell(inserted->cell());
|
||
tds().delete_vertex(inserted);
|
||
tds().delete_cells(hole.begin(), hole.end());
|
||
|
||
for(typename std::set<Cell_handle>::const_iterator ib = cells_set.begin(),
|
||
iend = cells_set.end(); ib != iend; ib++) *fit++ = *ib;
|
||
return v;
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
void
|
||
Triangulation_3<Gt,Tds,Upm>::
|
||
_make_big_hole_3D( Vertex_handle v,
|
||
std::map<Vertex_triple,Facet>& outer_map,
|
||
std::vector<Cell_handle> & hole,
|
||
std::vector<Vertex_handle> & vertices,
|
||
std::map<Vertex_handle, REMOVE_VERTEX_STATE> &vstates)
|
||
{
|
||
|
||
Cell_handle start = v->cell();
|
||
start->tds_data().mark_processed();
|
||
hole.push_back(start);
|
||
std::size_t i=0, n=1;
|
||
while(i < n)
|
||
{
|
||
|
||
Cell_handle c = hole[i++];
|
||
|
||
for(int k=0; k<4; k++)
|
||
{
|
||
Vertex_handle v0 = c->vertex(k);
|
||
|
||
const REMOVE_VERTEX_STATE vst = vstates[v0];
|
||
|
||
if(vst == CLEAR)
|
||
{
|
||
vstates[v0] = EXTREMITY;
|
||
vertices.push_back(v0);
|
||
} else if(vst == TO_REMOVE) {
|
||
// we mark the vertices, so all the vertices
|
||
// from the same cluster will be skipped
|
||
// in the remove_cluster_3D function
|
||
vstates[v0] = PROCESSED;
|
||
}
|
||
|
||
int i1 = vertex_triple_index(k, 0);
|
||
int i2 = vertex_triple_index(k, 1);
|
||
int i3 = vertex_triple_index(k, 2);
|
||
|
||
Vertex_handle v1 = c->vertex(i1);
|
||
Vertex_handle v2 = c->vertex(i2);
|
||
Vertex_handle v3 = c->vertex(i3);
|
||
|
||
Cell_handle opp_cit = c->neighbor(k);
|
||
int opp_i = tds().mirror_index(c,k);
|
||
Vertex_handle vm = opp_cit->vertex(opp_i);
|
||
|
||
bool pb1 = false, pb2 = false, pb3 = false, pbm = false;
|
||
|
||
const REMOVE_VERTEX_STATE vst1 = vstates[v1];
|
||
pb1 = vst1 == TO_REMOVE || vst1 == PROCESSED;
|
||
|
||
if(!pb1) {
|
||
const REMOVE_VERTEX_STATE vst2 = vstates[v2];
|
||
pb2 = vst2 == TO_REMOVE || vst2 == PROCESSED;
|
||
|
||
if(!pb2) {
|
||
const REMOVE_VERTEX_STATE vst3 = vstates[v3];
|
||
pb3 = vst3 == TO_REMOVE || vst3 == PROCESSED;
|
||
|
||
if(!pb3) {
|
||
const REMOVE_VERTEX_STATE vstm = vstates[vm];
|
||
pbm = vstm == TO_REMOVE || vstm == PROCESSED;
|
||
}
|
||
|
||
}
|
||
|
||
}
|
||
|
||
bool bad_opposite_cell = pb1 || pb2 || pb3 || pbm;
|
||
|
||
// update the hole if needed
|
||
// when the vertex is not to be removed
|
||
if(bad_opposite_cell)
|
||
{
|
||
if(opp_cit->tds_data().is_clear())
|
||
{
|
||
hole.push_back(opp_cit);
|
||
opp_cit->tds_data().mark_processed();
|
||
n++;
|
||
}
|
||
continue;
|
||
}
|
||
|
||
Facet f(opp_cit, opp_i);
|
||
Vertex_triple vt = make_vertex_triple(f);
|
||
make_canonical(vt);
|
||
outer_map[vt] = f;
|
||
v1->set_cell(opp_cit);
|
||
v2->set_cell(opp_cit);
|
||
v3->set_cell(opp_cit);
|
||
vm->set_cell(opp_cit);
|
||
|
||
}
|
||
}
|
||
|
||
std::size_t vsize = vertices.size();
|
||
for(std::size_t i=0; i<vsize; i++) vstates[vertices[i]] = CLEAR;
|
||
|
||
}
|
||
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class InputIterator, class VertexRemover >
|
||
bool
|
||
Triangulation_3<Gt, Tds, Upm>::
|
||
_remove_cluster_3D(InputIterator first, InputIterator beyond, VertexRemover &remover,
|
||
std::map<Vertex_handle, REMOVE_VERTEX_STATE> &vstates) {
|
||
InputIterator init = first;
|
||
while(first != beyond)
|
||
{
|
||
Vertex_handle v = *first++;
|
||
|
||
if(vstates[v] == PROCESSED) continue;
|
||
|
||
// _make_big_hole_3D and we fill the hole for each cluster
|
||
vstates[v] = PROCESSED;
|
||
|
||
// here, we make the hole for the cluster with v inside
|
||
typedef std::map<Vertex_triple,Facet> Vertex_triple_Facet_map;
|
||
std::vector<Cell_handle> hole;
|
||
std::vector<Vertex_handle> vertices;
|
||
hole.reserve(64);
|
||
vertices.reserve(32);
|
||
Vertex_triple_Facet_map outer_map;
|
||
_make_big_hole_3D(v, outer_map, hole, vertices, vstates);
|
||
|
||
// the connectivity is totally lost, we need to rebuild
|
||
if(!outer_map.size())
|
||
{
|
||
std::size_t nh = hole.size();
|
||
for(std::size_t i=0; i<nh; i++) hole[i]->tds_data().clear();
|
||
return false;
|
||
}
|
||
|
||
std::size_t vsi = vertices.size();
|
||
|
||
bool inf = false;
|
||
std::size_t i;
|
||
Unique_hash_map<Vertex_handle,Vertex_handle> vmap;
|
||
Cell_handle ch = Cell_handle();
|
||
|
||
if(vsi > 100)
|
||
{
|
||
// spatial sort if too many points
|
||
std::vector<Point> vps;
|
||
std::map<Point, Vertex_handle> mp_vps;
|
||
for(i=0; i<vsi;i++)
|
||
{
|
||
Vertex_handle vv = vertices[i];
|
||
if(! this->is_infinite(vv)) {
|
||
vps.push_back(vv->point());
|
||
mp_vps[vv->point()] = vv;
|
||
} else inf = true;
|
||
}
|
||
spatial_sort(vps.begin(), vps.end());
|
||
|
||
std::size_t svps = vps.size();
|
||
|
||
for(i=0; i < svps; i++){
|
||
Vertex_handle vv = mp_vps[vps[i]];
|
||
Vertex_handle vh = remover.tmp.insert(vv->point(), ch);
|
||
ch = vh->cell();
|
||
vmap[vh] = vv;
|
||
}
|
||
|
||
if(remover.tmp.dimension()==2){
|
||
Vertex_handle fake_inf = remover.tmp.insert(v->point());
|
||
vmap[fake_inf] = this->infinite_vertex();
|
||
} else {
|
||
vmap[remover.tmp.infinite_vertex()] = this->infinite_vertex();
|
||
}
|
||
} else {
|
||
|
||
for(i=0; i < vsi; i++){
|
||
if(!this->is_infinite(vertices[i])){
|
||
Vertex_handle vh = remover.tmp.insert(vertices[i]->point(), ch);
|
||
ch = vh->cell();
|
||
vmap[vh] = vertices[i];
|
||
} else {
|
||
inf = true;
|
||
}
|
||
}
|
||
|
||
if(remover.tmp.dimension()==2){
|
||
Vertex_handle fake_inf = remover.tmp.insert(v->point());
|
||
vmap[fake_inf] = this->infinite_vertex();
|
||
} else {
|
||
vmap[remover.tmp.infinite_vertex()] = this->infinite_vertex();
|
||
}
|
||
}
|
||
|
||
Vertex_triple_Facet_map inner_map;
|
||
|
||
if(inf){
|
||
for(All_cells_iterator it = remover.tmp.all_cells_begin(),
|
||
end = remover.tmp.all_cells_end(); it != end; ++it){
|
||
for(i=0; i < 4; i++) {
|
||
Facet f = std::pair<Cell_handle,int>(it,i);
|
||
Vertex_triple vt_aux = this->make_vertex_triple(f);
|
||
Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
|
||
this->make_canonical(vt);
|
||
inner_map[vt]= f;
|
||
}
|
||
}
|
||
} else {
|
||
for(Finite_cells_iterator it = remover.tmp.finite_cells_begin(),
|
||
end = remover.tmp.finite_cells_end(); it != end; ++it){
|
||
for(i=0; i < 4; i++){
|
||
Facet f = std::pair<Cell_handle,int>(it,i);
|
||
Vertex_triple vt_aux = this->make_vertex_triple(f);
|
||
Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
|
||
this->make_canonical(vt);
|
||
inner_map[vt]= f;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Grow inside the hole, by extending the surface
|
||
while(! outer_map.empty()){
|
||
typename Vertex_triple_Facet_map::iterator oit = outer_map.begin();
|
||
|
||
while(this->is_infinite(oit->first.first) ||
|
||
this->is_infinite(oit->first.second) ||
|
||
this->is_infinite(oit->first.third)){
|
||
++oit;
|
||
// otherwise the lookup in the inner_map fails
|
||
// because the infinite vertices are different
|
||
}
|
||
typename Vertex_triple_Facet_map::value_type o_vt_f_pair = *oit;
|
||
Cell_handle o_ch = o_vt_f_pair.second.first;
|
||
unsigned int o_i = o_vt_f_pair.second.second;
|
||
|
||
typename Vertex_triple_Facet_map::iterator iit =
|
||
inner_map.find(o_vt_f_pair.first);
|
||
CGAL_triangulation_assertion(iit != inner_map.end());
|
||
typename Vertex_triple_Facet_map::value_type i_vt_f_pair = *iit;
|
||
Cell_handle i_ch = i_vt_f_pair.second.first;
|
||
unsigned int i_i = i_vt_f_pair.second.second;
|
||
|
||
// create a new cell and glue it to the outer surface
|
||
Cell_handle new_ch = tds().create_cell();
|
||
new_ch->set_vertices(vmap[i_ch->vertex(0)], vmap[i_ch->vertex(1)],
|
||
vmap[i_ch->vertex(2)], vmap[i_ch->vertex(3)]);
|
||
|
||
o_ch->set_neighbor(o_i,new_ch);
|
||
new_ch->set_neighbor(i_i, o_ch);
|
||
|
||
for(i=0;i<4;i++) new_ch->vertex(i)->set_cell(new_ch);
|
||
|
||
// for the other faces check, if they can also be glued
|
||
for(i = 0; i < 4; i++){
|
||
if(i != i_i){
|
||
Facet f = std::pair<Cell_handle,int>(new_ch,i);
|
||
Vertex_triple vt = this->make_vertex_triple(f);
|
||
this->make_canonical(vt);
|
||
std::swap(vt.second,vt.third);
|
||
typename Vertex_triple_Facet_map::iterator oit2 = outer_map.find(vt);
|
||
if(oit2 == outer_map.end()){
|
||
std::swap(vt.second,vt.third);
|
||
outer_map[vt]= f;
|
||
} else {
|
||
// glue the faces
|
||
typename Vertex_triple_Facet_map::value_type o_vt_f_pair2 = *oit2;
|
||
Cell_handle o_ch2 = o_vt_f_pair2.second.first;
|
||
int o_i2 = o_vt_f_pair2.second.second;
|
||
o_ch2->set_neighbor(o_i2,new_ch);
|
||
new_ch->set_neighbor(i, o_ch2);
|
||
outer_map.erase(oit2);
|
||
}
|
||
}
|
||
}
|
||
|
||
outer_map.erase(oit);
|
||
}
|
||
|
||
this->tds().delete_cells(hole.begin(), hole.end());
|
||
remover.tmp.clear();
|
||
|
||
}
|
||
|
||
this->tds().delete_vertices(init, beyond);
|
||
|
||
return true;
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class InputIterator >
|
||
bool
|
||
Triangulation_3<Gt, Tds, Upm>::
|
||
does_repeat_in_range(InputIterator first, InputIterator beyond) const {
|
||
std::set<Vertex_handle> s;
|
||
while (first!=beyond) if (! s.insert(*first++).second ) return true;
|
||
return false;
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class InputIterator >
|
||
bool
|
||
Triangulation_3<Gt, Tds, Upm>::
|
||
infinite_vertex_in_range(InputIterator first, InputIterator beyond) const {
|
||
while(first != beyond) if(is_infinite(*first++)) return true;
|
||
return false;
|
||
}
|
||
|
||
template <class Gt, class Tds, bool Upm>
|
||
template < class InputIterator, class VertexRemover >
|
||
typename Triangulation_3<Gt, Tds, Upm>::size_type
|
||
Triangulation_3<Gt, Tds, Upm>::
|
||
remove(InputIterator first, InputIterator beyond, VertexRemover &remover) {
|
||
CGAL_triangulation_precondition(!does_repeat_in_range(first, beyond));
|
||
CGAL_triangulation_precondition(!infinite_vertex_in_range(first, beyond));
|
||
size_type n = number_of_vertices();
|
||
InputIterator init = first, init2 = first;
|
||
if(dimension() == 3 && n > 4)
|
||
{
|
||
// If we could add states on a vertex base as it is done
|
||
// for cells, it would improve the performance.
|
||
std::map<Vertex_handle, REMOVE_VERTEX_STATE> vstates;
|
||
_mark_vertices_to_remove(first, beyond, vstates);
|
||
if(!_test_dim_down_cluster(vstates))
|
||
{
|
||
if(_remove_cluster_3D(init, beyond, remover, vstates))
|
||
return n - number_of_vertices();
|
||
}
|
||
}
|
||
|
||
// dimension() < 3 or
|
||
// no connectivity of the remaining vertices
|
||
// we remove one by one
|
||
while (init2 != beyond) {
|
||
Vertex_handle v = *init2++;
|
||
remover.tmp.clear();
|
||
remove(v, remover);
|
||
}
|
||
return n - number_of_vertices();
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
is_valid(bool verbose, int level) const
|
||
{
|
||
if ( ! _tds.is_valid(verbose,level) ) {
|
||
if (verbose)
|
||
std::cerr << "invalid data structure" << std::endl;
|
||
CGAL_triangulation_assertion(false);
|
||
return false;
|
||
}
|
||
|
||
if ( infinite_vertex() == Vertex_handle() ) {
|
||
if (verbose)
|
||
std::cerr << "no infinite vertex" << std::endl;
|
||
CGAL_triangulation_assertion(false);
|
||
return false;
|
||
}
|
||
|
||
switch ( dimension() ) {
|
||
case 3:
|
||
{
|
||
for(Finite_cells_iterator it = finite_cells_begin(), end = finite_cells_end();
|
||
it != end; ++it)
|
||
is_valid_finite(it, verbose, level);
|
||
break;
|
||
}
|
||
case 2:
|
||
{
|
||
for(Finite_facets_iterator it = finite_facets_begin(), end = finite_facets_end();
|
||
it != end; ++it)
|
||
is_valid_finite(it->first,verbose,level);
|
||
break;
|
||
}
|
||
case 1:
|
||
{
|
||
for(Finite_edges_iterator it = finite_edges_begin(), end = finite_edges_end();
|
||
it != end; ++it)
|
||
is_valid_finite(it->first,verbose,level);
|
||
break;
|
||
}
|
||
}
|
||
if (verbose)
|
||
std::cerr << "valid triangulation" << std::endl;
|
||
return true;
|
||
}
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
is_valid(Cell_handle c, bool verbose, int level) const
|
||
{
|
||
if ( ! _tds.is_valid(c,verbose,level) ) {
|
||
if (verbose) {
|
||
std::cerr << "combinatorially invalid cell";
|
||
for (int i=0; i <= dimension(); i++ )
|
||
std::cerr << c->vertex(i)->point() << ", ";
|
||
std::cerr << std::endl;
|
||
}
|
||
CGAL_triangulation_assertion(false);
|
||
return false;
|
||
}
|
||
if ( ! is_infinite(c) )
|
||
is_valid_finite(c, verbose, level);
|
||
if (verbose)
|
||
std::cerr << "geometrically valid cell" << std::endl;
|
||
return true;
|
||
}
|
||
|
||
|
||
template < class GT, class Tds, bool Upm >
|
||
bool
|
||
Triangulation_3<GT,Tds,Upm>::
|
||
is_valid_finite(Cell_handle c, bool verbose, int) const
|
||
{
|
||
switch ( dimension() ) {
|
||
case 3:
|
||
{
|
||
if ( orientation(c->vertex(0)->point(),
|
||
c->vertex(1)->point(),
|
||
c->vertex(2)->point(),
|
||
c->vertex(3)->point()) != POSITIVE ) {
|
||
if (verbose)
|
||
std::cerr << "badly oriented cell "
|
||
<< c->vertex(0)->point() << ", "
|
||
<< c->vertex(1)->point() << ", "
|
||
<< c->vertex(2)->point() << ", "
|
||
<< c->vertex(3)->point() << std::endl;
|
||
CGAL_triangulation_assertion(false);
|
||
return false;
|
||
}
|
||
break;
|
||
}
|
||
case 2:
|
||
{
|
||
if (coplanar_orientation(c->vertex(0)->point(),
|
||
c->vertex(1)->point(),
|
||
c->vertex(2)->point()) != POSITIVE) {
|
||
if (verbose)
|
||
std::cerr << "badly oriented face "
|
||
<< c->vertex(0)->point() << ", "
|
||
<< c->vertex(1)->point() << ", "
|
||
<< c->vertex(2)->point() << std::endl;
|
||
CGAL_triangulation_assertion(false);
|
||
return false;
|
||
}
|
||
break;
|
||
}
|
||
case 1:
|
||
{
|
||
const Point & p0 = c->vertex(0)->point();
|
||
const Point & p1 = c->vertex(1)->point();
|
||
|
||
Vertex_handle v = c->neighbor(0)->vertex(c->neighbor(0)->index(c));
|
||
if ( ! is_infinite(v) )
|
||
{
|
||
if ( collinear_position(p0, p1, v->point()) != MIDDLE ) {
|
||
if (verbose)
|
||
std::cerr << "badly oriented edge "
|
||
<< p0 << ", " << p1 << std::endl
|
||
<< "with neighbor 0"
|
||
<< c->neighbor(0)->vertex(1-c->neighbor(0)->index(c))
|
||
->point()
|
||
<< ", " << v->point() << std::endl;
|
||
CGAL_triangulation_assertion(false);
|
||
return false;
|
||
}
|
||
}
|
||
|
||
v = c->neighbor(1)->vertex(c->neighbor(1)->index(c));
|
||
if ( ! is_infinite(v) )
|
||
{
|
||
if ( collinear_position(p1, p0, v->point()) != MIDDLE ) {
|
||
if (verbose)
|
||
std::cerr << "badly oriented edge "
|
||
<< p0 << ", " << p1 << std::endl
|
||
<< "with neighbor 1"
|
||
<< c->neighbor(1)->vertex(1-c->neighbor(1)->index(c))
|
||
->point()
|
||
<< ", " << v->point() << std::endl;
|
||
CGAL_triangulation_assertion(false);
|
||
return false;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
|
||
namespace internal {
|
||
|
||
// Internal function used by operator==.
|
||
template < class GT, class Tds1, class Tds2 >
|
||
bool
|
||
test_next(const Triangulation_3<GT, Tds1> &t1,
|
||
const Triangulation_3<GT, Tds2> &t2,
|
||
typename Triangulation_3<GT, Tds1>::Cell_handle c1,
|
||
typename Triangulation_3<GT, Tds2>::Cell_handle c2,
|
||
std::map<typename Triangulation_3<GT, Tds1>::Cell_handle,
|
||
typename Triangulation_3<GT, Tds2>::Cell_handle> &Cmap,
|
||
std::map<typename Triangulation_3<GT, Tds1>::Vertex_handle,
|
||
typename Triangulation_3<GT, Tds2>::Vertex_handle> &Vmap)
|
||
{
|
||
// This function tests and registers the 4 neighbors of c1/c2,
|
||
// and recursively calls itself over them.
|
||
// Returns false if an inequality has been found.
|
||
|
||
// Precondition: c1, c2 have been registered as well as their 4 vertices.
|
||
CGAL_triangulation_precondition(t1.dimension() >= 2);
|
||
CGAL_triangulation_precondition(Cmap[c1] == c2);
|
||
CGAL_triangulation_precondition(Vmap.find(c1->vertex(0)) != Vmap.end());
|
||
CGAL_triangulation_precondition(Vmap.find(c1->vertex(1)) != Vmap.end());
|
||
CGAL_triangulation_precondition(Vmap.find(c1->vertex(2)) != Vmap.end());
|
||
CGAL_triangulation_precondition(t1.dimension() == 2 ||
|
||
Vmap.find(c1->vertex(3)) != Vmap.end());
|
||
|
||
typedef Triangulation_3<GT, Tds1> Tr1;
|
||
typedef Triangulation_3<GT, Tds2> Tr2;
|
||
typedef typename Tr1::Vertex_handle Vertex_handle1;
|
||
typedef typename Tr1::Cell_handle Cell_handle1;
|
||
typedef typename Tr2::Vertex_handle Vertex_handle2;
|
||
typedef typename Tr2::Cell_handle Cell_handle2;
|
||
typedef typename std::map<Cell_handle1, Cell_handle2>::const_iterator Cit;
|
||
typedef typename std::map<Vertex_handle1,
|
||
Vertex_handle2>::const_iterator Vit;
|
||
|
||
for (int i=0; i <= t1.dimension(); ++i) {
|
||
Cell_handle1 n1 = c1->neighbor(i);
|
||
Cit cit = Cmap.find(n1);
|
||
Vertex_handle1 v1 = c1->vertex(i);
|
||
Vertex_handle2 v2 = Vmap[v1];
|
||
Cell_handle2 n2 = c2->neighbor(c2->index(v2));
|
||
if (cit != Cmap.end()) {
|
||
// n1 was already registered.
|
||
if (cit->second != n2)
|
||
return false;
|
||
continue;
|
||
}
|
||
// n1 has not yet been registered.
|
||
// We check that the new vertices match geometrically.
|
||
// And we register them.
|
||
Vertex_handle1 vn1 = n1->vertex(n1->index(c1));
|
||
Vertex_handle2 vn2 = n2->vertex(n2->index(c2));
|
||
Vit vit = Vmap.find(vn1);
|
||
if (vit != Vmap.end()) {
|
||
// vn1 already registered
|
||
if (vit->second != vn2)
|
||
return false;
|
||
}
|
||
else {
|
||
if (t2.is_infinite(vn2))
|
||
return false; // vn1 can't be infinite,
|
||
// since it would have been registered.
|
||
if (t1.geom_traits().compare_xyz_3_object()(vn1->point(),
|
||
vn2->point()) != 0)
|
||
return false;
|
||
// We register vn1/vn2.
|
||
Vmap.insert(std::make_pair(vn1, vn2));
|
||
}
|
||
|
||
// We register n1/n2.
|
||
Cmap.insert(std::make_pair(n1, n2));
|
||
|
||
// We recurse on n1/n2.
|
||
if (!test_next(t1, t2, n1, n2, Cmap, Vmap))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
} // namespace internal
|
||
|
||
|
||
template < class GT, class Tds1, class Tds2 >
|
||
bool
|
||
operator==(const Triangulation_3<GT, Tds1> &t1,
|
||
const Triangulation_3<GT, Tds2> &t2)
|
||
{
|
||
typedef typename Triangulation_3<GT, Tds1>::Vertex_handle Vertex_handle1;
|
||
typedef typename Triangulation_3<GT, Tds1>::Cell_handle Cell_handle1;
|
||
typedef typename Triangulation_3<GT, Tds2>::Vertex_handle Vertex_handle2;
|
||
typedef typename Triangulation_3<GT, Tds2>::Cell_handle Cell_handle2;
|
||
|
||
typedef typename Triangulation_3<GT, Tds1>::Point Point;
|
||
typedef typename Triangulation_3<GT, Tds1>::Geom_traits::Equal_3 Equal_3;
|
||
typedef typename Triangulation_3<GT, Tds1>::Geom_traits::Compare_xyz_3 Compare_xyz_3;
|
||
|
||
Equal_3 equal = t1.geom_traits().equal_3_object();
|
||
Compare_xyz_3 cmp1 = t1.geom_traits().compare_xyz_3_object();
|
||
Compare_xyz_3 cmp2 = t2.geom_traits().compare_xyz_3_object();
|
||
|
||
// Some quick checks.
|
||
if (t1.dimension() != t2.dimension()
|
||
|| t1.number_of_vertices() != t2.number_of_vertices()
|
||
|| t1.number_of_cells() != t2.number_of_cells())
|
||
return false;
|
||
|
||
int dim = t1.dimension();
|
||
// Special case for dimension < 1.
|
||
// The triangulation is uniquely defined in these cases.
|
||
if (dim < 1)
|
||
return true;
|
||
|
||
// Special case for dimension == 1.
|
||
if (dim == 1) {
|
||
// It's enough to test that the points are the same,
|
||
// since the triangulation is uniquely defined in this case.
|
||
using namespace boost;
|
||
std::vector<Point> V1 (t1.points_begin(), t1.points_end());
|
||
std::vector<Point> V2 (t2.points_begin(), t2.points_end());
|
||
std::sort(V1.begin(), V1.end(), boost::bind(cmp1, _1, _2) == NEGATIVE);
|
||
std::sort(V2.begin(), V2.end(), boost::bind(cmp2, _1, _2) == NEGATIVE);
|
||
return V1 == V2;
|
||
}
|
||
|
||
// We will store the mapping between the 2 triangulations vertices and
|
||
// cells in 2 maps.
|
||
std::map<Vertex_handle1, Vertex_handle2> Vmap;
|
||
std::map<Cell_handle1, Cell_handle2> Cmap;
|
||
|
||
// Handle the infinite vertex.
|
||
Vertex_handle1 v1 = t1.infinite_vertex();
|
||
Vertex_handle2 iv2 = t2.infinite_vertex();
|
||
Vmap.insert(std::make_pair(v1, iv2));
|
||
|
||
// We pick one infinite cell of t1, and try to match it against the
|
||
// infinite cells of t2.
|
||
Cell_handle1 c = v1->cell();
|
||
Vertex_handle1 v2 = c->vertex((c->index(v1)+1)%(dim+1));
|
||
Vertex_handle1 v3 = c->vertex((c->index(v1)+2)%(dim+1));
|
||
Vertex_handle1 v4 = c->vertex((c->index(v1)+3)%(dim+1));
|
||
const Point &p2 = v2->point();
|
||
const Point &p3 = v3->point();
|
||
const Point &p4 = v4->point();
|
||
|
||
std::vector<Cell_handle2> ics;
|
||
t2.incident_cells(iv2, std::back_inserter(ics));
|
||
for (typename std::vector<Cell_handle2>::const_iterator cit = ics.begin();
|
||
cit != ics.end(); ++cit) {
|
||
int inf = (*cit)->index(iv2);
|
||
|
||
if (equal(p2, (*cit)->vertex((inf+1)%(dim+1))->point()))
|
||
Vmap.insert(std::make_pair(v2, (*cit)->vertex((inf+1)%(dim+1))));
|
||
else if (equal(p2, (*cit)->vertex((inf+2)%(dim+1))->point()))
|
||
Vmap.insert(std::make_pair(v2, (*cit)->vertex((inf+2)%(dim+1))));
|
||
else if (dim == 3 &&
|
||
equal(p2, (*cit)->vertex((inf+3)%(dim+1))->point()))
|
||
Vmap.insert(std::make_pair(v2, (*cit)->vertex((inf+3)%(dim+1))));
|
||
else
|
||
continue; // None matched v2.
|
||
|
||
if (equal(p3, (*cit)->vertex((inf+1)%(dim+1))->point()))
|
||
Vmap.insert(std::make_pair(v3, (*cit)->vertex((inf+1)%(dim+1))));
|
||
else if (equal(p3, (*cit)->vertex((inf+2)%(dim+1))->point()))
|
||
Vmap.insert(std::make_pair(v3, (*cit)->vertex((inf+2)%(dim+1))));
|
||
else if (dim == 3 &&
|
||
equal(p3, (*cit)->vertex((inf+3)%(dim+1))->point()))
|
||
Vmap.insert(std::make_pair(v3, (*cit)->vertex((inf+3)%(dim+1))));
|
||
else
|
||
continue; // None matched v3.
|
||
|
||
if (dim == 3) {
|
||
if (equal(p4, (*cit)->vertex((inf+1)%(dim+1))->point()))
|
||
Vmap.insert(std::make_pair(v4,
|
||
(*cit)->vertex((inf+1)%(dim+1))));
|
||
else if (equal(p4, (*cit)->vertex((inf+2)%(dim+1))->point()))
|
||
Vmap.insert(std::make_pair(v4,
|
||
(*cit)->vertex((inf+2)%(dim+1))));
|
||
else if (equal(p4, (*cit)->vertex((inf+3)%(dim+1))->point()))
|
||
Vmap.insert(std::make_pair(v4,
|
||
(*cit)->vertex((inf+3)%(dim+1))));
|
||
else
|
||
continue; // None matched v4.
|
||
}
|
||
|
||
// Found it !
|
||
Cmap.insert(std::make_pair(c, *cit));
|
||
break;
|
||
}
|
||
|
||
if (Cmap.size() == 0)
|
||
return false;
|
||
|
||
// We now have one cell, we need to propagate recursively.
|
||
return internal::test_next(t1, t2,
|
||
Cmap.begin()->first, Cmap.begin()->second, Cmap, Vmap);
|
||
}
|
||
|
||
template < class GT, class Tds1, class Tds2 >
|
||
inline
|
||
bool
|
||
operator!=(const Triangulation_3<GT, Tds1> &t1,
|
||
const Triangulation_3<GT, Tds2> &t2)
|
||
{
|
||
return ! (t1 == t2);
|
||
}
|
||
|
||
} //namespace CGAL
|
||
|
||
#endif // CGAL_TRIANGULATION_3_H
|