cgal/Shape_regularization/include/CGAL/Shape_regularization/QP_regularization.h

455 lines
13 KiB
C++

// Copyright (c) 2020 GeometryFactory SARL (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Dmitry Anisimov, Gennadii Sytov, Jean-Philippe Bauchet, Florent Lafarge
//
#ifndef CGAL_SHAPE_REGULARIZATION_QP_REGULARIZATION_H
#define CGAL_SHAPE_REGULARIZATION_QP_REGULARIZATION_H
#include <CGAL/license/Shape_regularization.h>
// Internal includes.
#include <CGAL/Shape_regularization/internal/utils.h>
// Reference papers:
// [1] J. P. Bauchet and F. Lafarge, KIPPI: KInetic Polygonal Partitioning of Images, Section 3, 2018.
namespace CGAL {
namespace Shape_regularization {
/*!
\ingroup PkgShapeRegularizationRef
\brief Shape regularization algorithm based on the quadratic programming
global optimization.
Given a quadratic programming solver via the class `QuadraticProgramTraits`, this version of the
shape regularization algorithm enables to regularize a set of user-specified
geometric objects provided a way
- to access neighbors of each object via the `NeighborQuery` class;
- to obtain a maximum bound on a regularization characteristic (angle-orientation/
distance-offset/etc.) with respect to which an object is being regularized
via the `RegularizationType` class;
- to obtain a target value for each pair of neighbor objects via
the `RegularizationType` class.
This class is generic and forms a framework for different types of user-specified
regularizations. Please refer to the user manual in order to learn how to use it.
In particular, section \ref QP_Regularization_Segments "Regularizing 2D Segments"
shows an example.
\tparam GeomTraits
a model of `Kernel`
\tparam InputRange
a model of `ConstRange`
\tparam NeighQuery
a model of `NeighborQuery`
\tparam RegType
a model of `RegularizationType`
\tparam QPSolver
a model of `QuadraticProgramTraits`
*/
template<
typename GeomTraits,
typename InputRange,
typename NeighQuery,
typename RegType,
typename QPSolver>
class QP_regularization {
private:
class Parameters {
public:
using FT = typename GeomTraits::FT;
const FT weight, lambda;
const FT neg_inf, pos_inf;
const FT val_neg, val_pos;
Parameters():
weight(FT(100000)),
lambda(FT(4) / FT(5)),
neg_inf(-internal::max_value<FT>()),
pos_inf(+internal::max_value<FT>()),
val_neg(FT(-2) * lambda),
val_pos(FT(+2) * lambda)
{ }
};
public:
/// \cond SKIP_IN_MANUAL
using Traits = GeomTraits;
using Input_range = InputRange;
using Neighbor_query = NeighQuery;
using Regularization_type = RegType;
using Quadratic_program = QPSolver;
using FT = typename Traits::FT;
using Indices = std::vector<std::size_t>;
using Size_pair = std::pair<std::size_t, std::size_t>;
/// \endcond
/// \name Initialization
/// @{
/*!
\brief initializes all internal data structures.
\tparam NamedParameters
a sequence of \ref bgl_namedparameters "Named Parameters"
\param input_range
a const range of input objects for shape regularization
\param neighbor_query
an instance of `NeighQuery` that is used internally to
access object neighbors
\param regularization_type
an instance of `RegType` that is used internally to
obtain object bounds and target values
\param quadratic_program
an instance of `QPSolver` to solve the quadratic programming problem
\param np
an optional sequence of \ref bgl_namedparameters "Named Parameters"
among the ones listed below; this parameter can be omitted,
the default values are then used
\cgalNamedParamsBegin
\cgalParamNBegin{geom_traits}
\cgalParamDescription{an instance of geometric traits class}
\cgalParamType{a model of `Kernel`}
\cgalParamDefault{`GeomTraits()`}
\cgalParamNEnd
\cgalNamedParamsEnd
\pre input_range.size() >= 2
*/
template<typename NamedParameters = parameters::Default_named_parameters>
QP_regularization(
const InputRange& input_range,
NeighQuery& neighbor_query,
RegType& regularization_type,
QPSolver& quadratic_program,
const NamedParameters& np = parameters::default_values()) :
m_input_range(input_range),
m_neighbor_query(neighbor_query),
m_regularization_type(regularization_type),
m_quadratic_program(quadratic_program),
m_traits(parameters::choose_parameter(parameters::get_parameter(
np, internal_np::geom_traits), GeomTraits())),
m_parameters(Parameters()) {
clear();
}
/// @}
/// \name Regularization
/// @{
/*!
\brief runs the shape regularization algorithm.
*/
void regularize() {
if (m_input_range.size() < 2) return;
CGAL_precondition(m_input_range.size() >= 2);
// Graph = edges connecting neighbor segments.
build_graph_of_neighbors();
if (m_graph.size() == 0) {
std::cerr << "Error: the number of edges in the graph is zero!" << std::endl;
clear(); return;
}
// Bounds = number of input segments.
obtain_bounds();
if (m_bounds.size() == 0) {
std::cerr << "Error: the number of bound values is zero!" << std::endl;
clear(); return;
}
if (m_bounds.size() != m_input_range.size()) {
std::cerr << "Error: the number of bounds is not equal to the number " <<
"of input segments!" << std::endl;
clear(); return;
}
// Targets = number of graph edges.
obtain_targets();
if (m_targets.size() == 0) {
// std::cerr << "Warning: the number of target values is zero!" << std::endl;
clear(); return;
}
// QP data.
set_qp_data(m_quadratic_program);
// Solve.
std::vector<FT> solution;
solve_quadratic_program(m_quadratic_program, solution);
if (solution.size() != m_input_range.size() + m_targets.size()) {
std::cerr << "Error: the number of solution values is not equal to the " <<
"number of input segments + the number of edges in the graph!" << std::endl;
clear(); return;
}
// Update.
m_regularization_type.update(solution);
}
/// @}
/// \name Memory Management
/// @{
/*!
\brief clears all internal data structures.
This method does not release the allocated memory
but only removes the class internal data.
*/
void clear() {
m_graph.clear();
m_bounds.clear();
m_targets.clear();
m_max_bound = -FT(1);
}
/*!
\brief releases all memory that is used internally.
This method first calls the `clear()` method and
then releases the allocated memory.
*/
void release_memory() {
clear();
m_bounds.shrink_to_fit();
}
/// @}
private:
const Input_range& m_input_range;
Neighbor_query& m_neighbor_query;
Regularization_type& m_regularization_type;
Quadratic_program& m_quadratic_program;
// The field m_traits is not currently used. We should probably remove the
// reference in case it will be used in the future!
const Traits m_traits;
const Parameters m_parameters;
FT m_max_bound;
std::set<Size_pair> m_graph;
std::vector<FT> m_bounds;
std::map<Size_pair, FT> m_targets;
void build_graph_of_neighbors() {
Size_pair pair;
Indices neighbors;
m_graph.clear();
for (std::size_t i = 0; i < m_input_range.size(); ++i) {
m_neighbor_query(i, neighbors);
for (const std::size_t neighbor : neighbors) {
i < neighbor ?
pair = std::make_pair(i, neighbor) :
pair = std::make_pair(neighbor, i);
m_graph.insert(pair);
}
}
CGAL_assertion(m_graph.size() > 0);
}
void obtain_bounds() {
m_bounds.clear();
m_bounds.reserve(m_input_range.size());
m_max_bound = -FT(1);
for (std::size_t i = 0; i < m_input_range.size(); ++i) {
const FT bound = m_regularization_type.bound(i);
CGAL_assertion(bound >= FT(0));
m_bounds.push_back(bound);
m_max_bound = (CGAL::max)(bound, m_max_bound);
}
CGAL_assertion(m_max_bound >= FT(0));
CGAL_assertion(m_bounds.size() == m_input_range.size());
}
void obtain_targets() {
m_targets.clear();
for (const auto& pair : m_graph) {
const std::size_t i = pair.first;
const std::size_t j = pair.second;
const FT target = m_regularization_type.target(i, j);
if (CGAL::abs(target) <
m_regularization_type.bound(i) + m_regularization_type.bound(j)) {
m_targets[pair] = target;
}
}
CGAL_assertion(m_targets.size() >= 0);
}
void set_qp_data(Quadratic_program& qp) const {
const std::size_t k = m_input_range.size(); // k segments
const std::size_t e = m_targets.size(); // e graph edges
const std::size_t n = k + e; // number of variables
const std::size_t m = 2 * e + n; // number of constraints
qp.resize(n, m);
set_quadratic_term(n, k, qp);
set_linear_term(n, k, qp);
set_constant_term(qp);
set_constraint_matrix(n, k, qp);
set_constraint_bounds(m, k, e, qp);
}
void set_quadratic_term(
const std::size_t n,
const std::size_t k,
Quadratic_program& qp) const {
for (std::size_t i = 0; i < n; ++i) {
FT value = FT(0);
if (i < k) {
value = FT(2) * m_parameters.weight * (FT(1) - m_parameters.lambda) /
(m_bounds[i] * m_bounds[i] * FT(k));
}
qp.set_P(i, i, value);
}
// CGAL_assertion(qp.P_size() == n);
}
void set_linear_term(
const std::size_t n,
const std::size_t k,
Quadratic_program& qp) const {
for (std::size_t i = 0; i < n; ++i) {
FT value = FT(0);
if (i >= k) {
value = m_parameters.lambda * m_parameters.weight /
(FT(4) * m_max_bound * FT(n - k));
}
qp.set_q(i, value);
}
// CGAL_assertion(qp.q_size() == n);
}
void set_constant_term(
Quadratic_program& qp) const {
const FT value = FT(0);
qp.set_r(value);
}
void set_constraint_matrix(
const std::size_t n,
const std::size_t k,
Quadratic_program& qp) const {
CGAL_assertion(n >= k);
std::size_t it = 0;
std::size_t ij = k;
for (const auto& target : m_targets) {
const std::size_t i = target.first.first;
const std::size_t j = target.first.second;
qp.set_A(it, i, m_parameters.val_neg);
qp.set_A(it, j, m_parameters.val_pos);
qp.set_A(it, ij, -FT(1));
++it;
qp.set_A(it, i, m_parameters.val_pos);
qp.set_A(it, j, m_parameters.val_neg);
qp.set_A(it, ij, -FT(1));
++it; ++ij;
}
// Used to set bounds for each variable li <= xi <= ui.
const std::size_t s = m_targets.size() * 2;
for (std::size_t i = 0; i < n; ++i) {
qp.set_A(s + i, i, FT(1));
}
// const std::size_t A_nnz = m_targets.size() * 6 + n;
// CGAL_assertion(qp.A_size() == A_nnz);
}
void set_constraint_bounds(
const std::size_t m,
const std::size_t k,
const std::size_t e,
Quadratic_program& qp) const {
auto tit = m_targets.begin();
for (std::size_t i = 0; i < m; ++i) {
if (i < 2 * e) { // first 2 * e constraints
const FT value = tit->second;
if (i % 2 == 0) {
qp.set_l(i, m_parameters.neg_inf);
qp.set_u(i, m_parameters.val_neg * value);
} else {
qp.set_l(i, m_parameters.neg_inf);
qp.set_u(i, m_parameters.val_pos * value); ++tit;
}
} else if (i < 2 * e + k) { // next k constraints
qp.set_l(i, -FT(1) * m_max_bound);
qp.set_u(i, +FT(1) * m_max_bound);
} else { // last e constraints
qp.set_l(i, m_parameters.neg_inf);
qp.set_u(i, m_parameters.pos_inf);
}
}
// CGAL_assertion(qp.l_size() == m); // all together m constraints
// CGAL_assertion(qp.u_size() == m);
}
void solve_quadratic_program(
Quadratic_program& qp,
std::vector<FT>& solution) {
const std::size_t n =
m_input_range.size() + m_targets.size();
solution.clear();
solution.reserve(n);
const auto success = qp.solve(
std::back_inserter(solution));
if (!success) {
std::cerr << "WARNING: The solver has not converged!" << std::endl;
}
CGAL_assertion(solution.size() == n);
}
};
} // namespace Shape_regularization
} // namespace CGAL
#endif // CGAL_SHAPE_REGULARIZATION_QP_REGULARIZATION_H