cgal/Mesh_3/include/CGAL/Labeled_mesh_domain_3.h

651 lines
20 KiB
C++

// Copyright (c) 2009 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Stéphane Tayeb, Aymeric PELLE
//
//******************************************************************************
// File Description :
// class Labeled_mesh_domain_3. See class description.
//******************************************************************************
#ifndef CGAL_LABELED_MESH_DOMAIN_3_H
#define CGAL_LABELED_MESH_DOMAIN_3_H
#include <CGAL/Mesh_3/config.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/Mesh_3/Creator_weighted_point_3.h>
#include <boost/variant.hpp>
#include <boost/format.hpp>
#include <boost/optional.hpp>
#include <CGAL/tuple.h>
#include <CGAL/Origin.h>
namespace CGAL {
/**
* \class Labeled_mesh_domain_3
*
* Function f must take his values into N.
* Let p be a Point.
* - f(p)=0 means that p is outside domain.
* - f(p)=a, a!=0 means that p is inside subdomain a.
*
* Any boundary facet is labelled <a,b>, a<b, where a and b are the
* tags of it's incident subdomain.
* Thus, a boundary facet of the domain is labelled <0,b>, where b!=0.
*/
template<class Function, class BGT>
class Labeled_mesh_domain_3
{
public:
/// Geometric object types
typedef typename BGT::Point_3 Point_3;
typedef typename BGT::Segment_3 Segment_3;
typedef typename BGT::Ray_3 Ray_3;
typedef typename BGT::Line_3 Line_3;
typedef typename BGT::Vector_3 Vector_3;
typedef typename BGT::Sphere_3 Sphere_3;
typedef CGAL::Bbox_3 Bbox_3;
protected:
typedef typename BGT::Iso_cuboid_3 Iso_cuboid_3;
public:
// Kernel_traits compatibility
typedef BGT R;
// access Function type from inherited class
typedef Function Fct;
//-------------------------------------------------------
// Index Types
//-------------------------------------------------------
/// Type of indexes for cells of the input complex
typedef typename Function::return_type Subdomain_index;
typedef boost::optional<Subdomain_index> Subdomain;
/// Type of indexes for surface patch of the input complex
typedef std::pair<Subdomain_index, Subdomain_index> Surface_patch_index;
typedef boost::optional<Surface_patch_index> Surface_patch;
/// Type of indexes to characterize the lowest dimensional face of the input
/// complex on which a vertex lie
typedef boost::variant<Subdomain_index, Surface_patch_index> Index;
typedef CGAL::cpp11::tuple<Point_3,Index,int> Intersection;
typedef typename BGT::FT FT;
typedef BGT Geom_traits;
/**
* @brief Constructor
*/
Labeled_mesh_domain_3(const Function& f,
const Sphere_3& bounding_sphere,
const FT& error_bound = FT(1e-3),
CGAL::Random* p_rng = NULL);
Labeled_mesh_domain_3(const Function& f,
const Bbox_3& bbox,
const FT& error_bound = FT(1e-3),
CGAL::Random* p_rng = NULL);
Labeled_mesh_domain_3(const Function& f,
const Iso_cuboid_3& bbox,
const FT& error_bound = FT(1e-3),
CGAL::Random* p_rng = NULL);
/// Destructor
virtual ~Labeled_mesh_domain_3()
{
if(delete_rng_)
delete p_rng_;
}
/**
* Constructs a set of \ccc{n} points on the surface, and output them to
* the output iterator \ccc{pts} whose value type is required to be
* \ccc{std::pair<Points_3, Index>}.
*/
struct Construct_initial_points
{
Construct_initial_points(const Labeled_mesh_domain_3& domain)
: r_domain_(domain) {}
template<class OutputIterator>
OutputIterator operator()(OutputIterator pts, const int n = 12) const;
private:
const Labeled_mesh_domain_3& r_domain_;
};
/// Returns Construct_initial_points object
Construct_initial_points construct_initial_points_object() const
{
return Construct_initial_points(*this);
}
/**
* Returns a bounding box of the domain
*/
Bbox_3 bbox() const {
return bbox_.bbox();
}
/**
* Returns true if point~\ccc{p} is in the domain. If \ccc{p} is in the
* domain, the parameter index is set to the index of the subdomain
* including $p$. It is set to the default value otherwise.
*/
struct Is_in_domain
{
Is_in_domain(const Labeled_mesh_domain_3& domain) : r_domain_(domain) {}
Subdomain operator()(const Point_3& p) const
{
// f(p)==0 means p is outside the domain
Subdomain_index index = (r_domain_.function_)(p);
if ( Subdomain_index() == index )
return Subdomain();
else
return Subdomain(index);
}
private:
const Labeled_mesh_domain_3& r_domain_;
};
/// Returns Is_in_domain object
Is_in_domain is_in_domain_object() const { return Is_in_domain(*this); }
/**
* Returns true is the element \ccc{type} intersect properly any of the
* surface patches describing the either the domain boundary or some
* subdomain boundary.
* \ccc{Type} is either \ccc{Segment_3}, \ccc{Ray_3} or \ccc{Line_3}.
* Parameter index is set to the index of the intersected surface patch
* if \ccc{true} is returned and to the default \ccc{Surface_patch_index}
* value otherwise.
*/
struct Do_intersect_surface
{
Do_intersect_surface(const Labeled_mesh_domain_3& domain)
: r_domain_(domain) {}
Surface_patch operator()(const Segment_3& s) const
{
return this->operator()(s.source(), s.target());
}
Surface_patch operator()(const Ray_3& r) const
{
return clip_to_segment(r);
}
Surface_patch operator()(const Line_3& l) const
{
return clip_to_segment(l);
}
private:
/// Returns true if points \c a & \c b do not belong to the same subdomain
/// \c index is set to the surface index of subdomains f(a), f(b)
Surface_patch operator()(const Point_3& a, const Point_3& b) const
{
// If f(a) != f(b), then [a,b] intersects some surface. Here we consider
// [a,b] intersects surface_patch labelled <f(a),f(b)> (or <f(b),f(a)>).
// It may be false, further rafinement will improve precision
const Subdomain_index value_a = r_domain_.function_(a);
const Subdomain_index value_b = r_domain_.function_(b);
if ( value_a != value_b )
return Surface_patch(r_domain_.make_surface_index(value_a, value_b));
else
return Surface_patch();
}
/**
* Clips \c query to a segment \c s, and call operator()(s)
*/
template<typename Query>
Surface_patch clip_to_segment(const Query& query) const
{
typename cpp11::result_of<typename BGT::Intersect_3(Query, Iso_cuboid_3)>::type
clipped = CGAL::intersection(query, r_domain_.bbox_);
if(clipped)
#if CGAL_INTERSECTION_VERSION > 1
if(const Segment_3* s = boost::get<Segment_3>(&*clipped))
return this->operator()(*s);
#else
if(const Segment_3* s = object_cast<Segment_3>(&clipped))
return this->operator()(*s);
#endif
return Surface_patch();
}
private:
const Labeled_mesh_domain_3& r_domain_;
};
/// Returns Do_intersect_surface object
Do_intersect_surface do_intersect_surface_object() const
{
return Do_intersect_surface(*this);
}
/**
* Returns a point in the intersection of the primitive \ccc{type}
* with some boundary surface.
* \ccc{Type1} is either \ccc{Segment_3}, \ccc{Ray_3} or \ccc{Line_3}.
* The integer \ccc{dimension} is set to the dimension of the lowest
* dimensional face in the input complex containing the returned point, and
* \ccc{index} is set to the index to be stored at a mesh vertex lying
* on this face.
*/
struct Construct_intersection
{
Construct_intersection(const Labeled_mesh_domain_3& domain)
: r_domain_(domain) {}
Intersection operator()(const Segment_3& s) const
{
#ifndef CGAL_MESH_3_NO_LONGER_CALLS_DO_INTERSECT_3
CGAL_precondition(r_domain_.do_intersect_surface_object()(s));
#endif // NOT CGAL_MESH_3_NO_LONGER_CALLS_DO_INTERSECT_3
return this->operator()(s.source(),s.target());
}
Intersection operator()(const Ray_3& r) const
{
return clip_to_segment(r);
}
Intersection operator()(const Line_3& l) const
{
return clip_to_segment(l);
}
private:
/**
* Returns a point in the intersection of [a,b] with the surface
* \c a must be the source point, and \c b the out point. It's important
* because it drives bisection cuts.
* Indeed, the returned point is the first intersection from \c [a,b]
* with a subdomain surface.
*/
Intersection operator()(const Point_3& a, const Point_3& b) const
{
// Functors
typename BGT::Compute_squared_distance_3 squared_distance =
BGT().compute_squared_distance_3_object();
typename BGT::Construct_midpoint_3 midpoint =
BGT().construct_midpoint_3_object();
// Non const points
Point_3 p1 = a;
Point_3 p2 = b;
Point_3 mid = midpoint(p1, p2);
// Cannot be const: those values are modified below.
Subdomain_index value_at_p1 = r_domain_.function_(p1);
Subdomain_index value_at_p2 = r_domain_.function_(p2);
Subdomain_index value_at_mid = r_domain_.function_(mid,true);
// If both extremities are in the same subdomain,
// there is no intersection.
// This should not happen...
if( value_at_p1 == value_at_p2 )
{
return Intersection();
}
// Construct the surface patch index and index from the values at 'a'
// and 'b'. Even if the bissection find out a different pair of
// values, the reported index will be constructed from the initial
// values.
const Surface_patch_index sp_index =
r_domain_.make_surface_index(value_at_p1, value_at_p2);
const Index index = r_domain_.index_from_surface_patch_index(sp_index);
// Else lets find a point (by bisection)
// Bisection ends when the point is near than error bound from surface
while(true)
{
// If the two points are enough close, then we return midpoint
if ( squared_distance(p1, p2) < r_domain_.squared_error_bound_ )
{
CGAL_assertion(value_at_p1 != value_at_p2);
return Intersection(mid, index, 2);
}
// Else we must go on
// Here we consider that p1(a) is the source point. Thus, we keep p1 and
// change p2 if f(p1)!=f(p2).
// That allows us to find the first intersection from a of [a,b] with
// a surface.
if ( value_at_p1 != value_at_mid )
{
p2 = mid;
value_at_p2 = value_at_mid;
}
else
{
p1 = mid;
value_at_p1 = value_at_mid;
}
mid = midpoint(p1, p2);
value_at_mid = r_domain_.function_(mid,true);
}
}
/// Clips \c query to a segment \c s, and call operator()(s)
template<typename Query>
Intersection clip_to_segment(const Query& query) const
{
typename cpp11::result_of<typename BGT::Intersect_3(Query, Iso_cuboid_3)>::type
clipped = CGAL::intersection(query, r_domain_.bbox_);
if(clipped)
#if CGAL_INTERSECTION_VERSION > 1
if(const Segment_3* s = boost::get<Segment_3>(&*clipped))
return this->operator()(*s);
#else
if(const Segment_3* s = object_cast<Segment_3>(&clipped))
return this->operator()(*s);
#endif
return Intersection();
}
private:
const Labeled_mesh_domain_3& r_domain_;
};
/// Returns Construct_intersection object
Construct_intersection construct_intersection_object() const
{
return Construct_intersection(*this);
}
/**
* Returns the index to be stored in a vertex lying on the surface identified
* by \c index.
*/
Index index_from_surface_patch_index(const Surface_patch_index& index) const
{ return Index(index); }
/**
* Returns the index to be stored in a vertex lying in the subdomain
* identified by \c index.
*/
Index index_from_subdomain_index(const Subdomain_index& index) const
{ return Index(index); }
/**
* Returns the \c Surface_patch_index of the surface patch
* where lies a vertex with dimension 2 and index \c index.
*/
Surface_patch_index surface_patch_index(const Index& index) const
{ return boost::get<Surface_patch_index>(index); }
/**
* Returns the index of the subdomain containing a vertex
* with dimension 3 and index \c index.
*/
Subdomain_index subdomain_index(const Index& index) const
{ return boost::get<Subdomain_index>(index); }
// -----------------------------------
// Backward Compatibility
// -----------------------------------
#ifndef CGAL_MESH_3_NO_DEPRECATED_SURFACE_INDEX
typedef Surface_patch_index Surface_index;
Index index_from_surface_index(const Surface_index& index) const
{ return index_from_surface_patch_index(index); }
Surface_index surface_index(const Index& index) const
{ return surface_patch_index(index); }
#endif // CGAL_MESH_3_NO_DEPRECATED_SURFACE_INDEX
// -----------------------------------
// End backward Compatibility
// -----------------------------------
private:
/// Returns Surface_patch_index from \c i and \c j
Surface_patch_index make_surface_index(const Subdomain_index i,
const Subdomain_index j) const
{
if ( i < j ) return Surface_patch_index(i,j);
else return Surface_patch_index(j,i);
}
/// Returns squared error bound from \c bbox and \c error
FT squared_error_bound(const Iso_cuboid_3& bbox, const FT& error) const
{
typename BGT::Compute_squared_distance_3 squared_distance =
BGT().compute_squared_distance_3_object();
return squared_distance((bbox.min)(), (bbox.max)())*error*error/4;
}
/// Returns squared error bound from \c sphere and \c error
FT squared_error_bound(const Sphere_3& sphere, const FT& error) const
{
typename BGT::Compute_squared_radius_3 squared_radius =
BGT().compute_squared_radius_3_object();
return squared_radius(sphere)*error*error;
}
/// Returns the bounding sphere of an Iso_cuboid_3
Sphere_3 bounding_sphere(const Iso_cuboid_3& bbox) const
{
typename BGT::Construct_sphere_3 sphere = BGT().construct_sphere_3_object();
return sphere((bbox.min)(), (bbox.max)());
}
/// Returns and Iso_cuboid_3 from a Bbox_3
Iso_cuboid_3 iso_cuboid(const Bbox_3& bbox)
{
const Point_3 p_min(bbox.xmin(), bbox.ymin(), bbox.zmin());
const Point_3 p_max(bbox.xmax(), bbox.ymax(), bbox.zmax());
return Iso_cuboid_3(p_min,p_max);
}
protected:
/// Returns bounding box
const Iso_cuboid_3& bounding_box() const { return bbox_; }
private:
/// The function which answers subdomain queries
const Function function_;
/// The bounding box
const Iso_cuboid_3 bbox_;
/// The random number generator used by Construct_initial_points
CGAL::Random* p_rng_;
bool delete_rng_;
/// Error bound relative to sphere radius
FT squared_error_bound_;
private:
// Disabled copy constructor & assignment operator
typedef Labeled_mesh_domain_3<Function,BGT> Self;
Labeled_mesh_domain_3(const Self& src);
Self& operator=(const Self& src);
}; // end class Labeled_mesh_domain_3
//-------------------------------------------------------
// Method implementation
//-------------------------------------------------------
template<class F, class BGT>
Labeled_mesh_domain_3<F,BGT>::Labeled_mesh_domain_3(
const F& f,
const Sphere_3& bounding_sphere,
const FT& error_bound,
CGAL::Random* p_rng)
: function_(f)
, bbox_(iso_cuboid(bounding_sphere.bbox()))
, p_rng_(p_rng)
, delete_rng_(false)
, squared_error_bound_(squared_error_bound(bounding_sphere,error_bound))
{
// TODO : CGAL_ASSERT(0 < f(bounding_sphere.get_center()) ) ?
if(!p_rng_)
{
p_rng_ = new CGAL::Random(0);
delete_rng_ = true;
}
}
template<class F, class BGT>
Labeled_mesh_domain_3<F,BGT>::Labeled_mesh_domain_3(
const F& f,
const Bbox_3& bbox,
const FT& error_bound,
CGAL::Random* p_rng)
: function_(f)
, bbox_(iso_cuboid(bbox))
, p_rng_(p_rng)
, delete_rng_(false)
, squared_error_bound_(squared_error_bound(bbox_,error_bound))
{
// TODO : CGAL_ASSERT(0 < f(bounding_sphere.get_center()) ) ?
if(!p_rng_)
{
p_rng_ = new CGAL::Random(0);
delete_rng_ = true;
}
}
template<class F, class BGT>
Labeled_mesh_domain_3<F,BGT>::Labeled_mesh_domain_3(
const F& f,
const Iso_cuboid_3& bbox,
const FT& error_bound,
CGAL::Random* p_rng)
: function_(f)
, bbox_(bbox)
, p_rng_(p_rng)
, delete_rng_(false)
, squared_error_bound_(squared_error_bound(bbox_,error_bound))
{
// TODO : CGAL_ASSERT(0 < f( bbox.get_center()) ) ?
if(!p_rng_)
{
p_rng_ = new CGAL::Random(0);
delete_rng_ = true;
}
}
template<class F, class BGT>
template<class OutputIterator>
OutputIterator
Labeled_mesh_domain_3<F,BGT>::Construct_initial_points::operator()(
OutputIterator pts,
const int nb_points) const
{
// Create point_iterator on and in bounding_sphere
typedef Random_points_on_sphere_3<Point_3> Random_points_on_sphere_3;
typedef Random_points_in_sphere_3<Point_3> Random_points_in_sphere_3;
const FT squared_radius = BGT().compute_squared_radius_3_object()(
r_domain_.bounding_sphere(r_domain_.bbox_));
const double radius = std::sqrt(CGAL::to_double(squared_radius));
CGAL::Random& rng = *(r_domain_.p_rng_);
Random_points_on_sphere_3 random_point_on_sphere(radius, rng);
Random_points_in_sphere_3 random_point_in_sphere(radius, rng);
// Get some functors
typename BGT::Construct_segment_3 segment_3 =
BGT().construct_segment_3_object();
typename BGT::Construct_vector_3 vector_3 =
BGT().construct_vector_3_object();
typename BGT::Construct_translated_point_3 translate =
BGT().construct_translated_point_3_object();
typename BGT::Construct_center_3 center = BGT().construct_center_3_object();
// Get translation from origin to sphere center
Point_3 center_pt = center(r_domain_.bounding_sphere(r_domain_.bbox_));
const Vector_3 sphere_translation = vector_3(CGAL::ORIGIN, center_pt);
// Create nb_point points
int n = nb_points;
#ifdef CGAL_MESH_3_VERBOSE
std::cerr << "construct initial points:\n";
#endif
while ( 0 != n )
{
// Get a random segment
const Point_3 random_point = translate(*random_point_on_sphere,
sphere_translation);
const Segment_3 random_seg = segment_3(center_pt, random_point);
// Add the intersection to the output if it exists
Surface_patch surface = r_domain_.do_intersect_surface_object()(random_seg);
if ( surface )
{
const Point_3 intersect_pt = CGAL::cpp11::get<0>(
r_domain_.construct_intersection_object()(random_seg));
*pts++ = std::make_pair(intersect_pt,
r_domain_.index_from_surface_patch_index(*surface));
--n;
#ifdef CGAL_MESH_3_VERBOSE
std::cerr << boost::format("\r \r"
"%1%/%2% initial point(s) found...")
% (nb_points - n)
% nb_points;
#endif
}
else
{
// Get a new random point into sphere as center of object
// It may be necessary if the center of the domain is empty, e.g. torus
// In general case, it is good for input point dispersion
++random_point_in_sphere;
center_pt = translate(*random_point_in_sphere, sphere_translation);
}
++random_point_on_sphere;
}
#ifdef CGAL_MESH_3_VERBOSE
std::cerr << "\n";
#endif
return pts;
}
} // end namespace CGAL
#endif // LABELLED_MESH_TRAITS_3_H_