cgal/Surface_mesh_topology/include/CGAL/Path_on_surface.h

946 lines
27 KiB
C++

// Copyright (c) 2019 CNRS and LIRIS' Establishments (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#ifndef CGAL_PATH_ON_SURFACE_H
#define CGAL_PATH_ON_SURFACE_H 1
#include <CGAL/license/Surface_mesh_topology.h>
#include <CGAL/Combinatorial_map_operations.h>
#include <CGAL/Combinatorial_map.h>
#include <CGAL/Random.h>
#include <CGAL/Face_graph_wrapper.h>
#include <CGAL/Surface_mesh_topology/internal/Path_on_surface_with_rle.h>
#include <boost/algorithm/searching/knuth_morris_pratt.hpp>
#include <utility>
#include <string>
#include <vector>
#include <iostream>
#include <sstream>
#include <initializer_list>
namespace CGAL {
namespace Surface_mesh_topology {
template<typename Mesh>
class Path_on_surface
{
friend class internal::Path_on_surface_with_rle<Mesh>;
public:
typedef Path_on_surface<Mesh> Self;
typedef typename Get_map<Mesh, Mesh>::type Map;
typedef typename Map::Dart_const_handle Dart_const_handle;
Path_on_surface(const Mesh& amap) : m_map(amap), m_is_closed(false)
{}
Path_on_surface(const internal::Path_on_surface_with_rle<Mesh>& apath) :
m_map(apath.get_map()),
m_is_closed(apath.is_closed())
{
for (auto it=apath.m_path.begin(), itend=apath.m_path.end(); it!=itend; ++it)
{
push_back(it->begin, false);
if (it->length>0)
{ extend_straight_positive(it->length, false); }
else if (it->length<0)
{ extend_straight_negative(-(it->length), false); }
}
CGAL_assertion(is_valid());
}
void swap(Self& p2)
{
if (this==&p2) { return; }
CGAL_assertion(&m_map==&(p2.m_map));
m_path.swap(p2.m_path);
std::swap(m_is_closed, p2.m_is_closed);
}
Self& operator=(const Self& other)
{
CGAL_assertion(&m_map==&(other.m_map));
if (this!=&other)
{
m_path=other.m_path;
m_is_closed=other.m_is_closed;
}
return *this;
}
/// @return true iff the path is empty
bool is_empty() const
{ return m_path.empty(); }
/// @return the length of the path, i.e. its number of darts.
std::size_t length() const
{ return m_path.size(); }
/// @return true iff the path is closed.
/// (m_is_closed is updated after each path modification).
bool is_closed() const
{ return m_is_closed; }
/// @return the combinatorial map supporting this path.
const Map& get_map() const
{ return m_map; }
/// clear the path.
void clear()
{
m_path.clear();
m_is_closed=false;
}
/// @return true iff the next index exists
bool next_index_exists(std::size_t i) const
{ return is_closed() || i<(m_path.size()-1); }
/// @return the index after index i.
std::size_t next_index(std::size_t i) const
{ return ((is_closed() && i==(m_path.size()-1))?0:(i+1)); }
/// @return the index before index i.
std::size_t prev_index(std::size_t i) const
{ return ((is_closed() && i==0)?(m_path.size()-1):(i-1)); }
/// @return the ith dart of the path.
Dart_const_handle get_ith_dart(std::size_t i) const
{
CGAL_assertion(i<m_path.size());
return m_path[i];
}
/// @return the ith dart of the path.
Dart_const_handle operator[] (std::size_t i) const
{ return get_ith_dart(i); }
/// @return the dart before the ith dart of the path,
/// nullptr if such a dart does not exist.
Dart_const_handle get_prev_dart(std::size_t i) const
{
CGAL_assertion(i<m_path.size());
if (i==0 && !is_closed()) return nullptr;
return m_path[prev_index(i)];
}
/// @return the dart after the ith dart of the path,
/// nullptr if such a dart does not exist.
Dart_const_handle get_next_dart(std::size_t i) const
{
CGAL_assertion(i<m_path.size());
if (i==m_path.size()-1 && !is_closed()) return nullptr;
return m_path[next_index(i)];
}
/// @return the first dart of the path.
/// @pre !is_empty()
Dart_const_handle front() const
{
CGAL_assertion(!is_empty());
return m_path.front();
}
/// @return the last dart of the path.
/// @pre !is_empty()
Dart_const_handle back() const
{
CGAL_assertion(!is_empty());
return m_path.back();
}
/// @return the index of the last dart of the path.
/// @pre !is_empty()
std::size_t back_index() const
{ return get_map().darts().index(back()); }
/// @return true iff df can be added at the end of the path.
bool can_be_pushed(Dart_const_handle dh) const
{
// This assert is too long CGAL_assertion(m_map.darts().owns(dh));
if (is_empty()) return true;
return m_map.template belong_to_same_cell<0>(m_map.other_extremity(back()),
dh);
}
/// Add the given dart at the end of this path.
/// @pre can_be_pushed(dh)
void push_back(Dart_const_handle dh, bool update_isclosed=true)
{
CGAL_assertion(dh!=Map::null_handle);
/* This assert is too long, it is tested in the is_valid method. */
// CGAL_assertion(can_be_pushed(dh));
m_path.push_back(dh);
if (update_isclosed) { update_is_closed(); }
}
/// @return true iff the ith dart can be added at the end of the path.
bool can_be_pushed_by_index(std::size_t i) const
{ return can_be_pushed(get_map().dart_handle(i)); }
/// Add the given ith dart at the end of this path.
void push_back_by_index(std::size_t i)
{ push_back(get_map().dart_handle(i)); }
void push_back_by_index(std::initializer_list<std::size_t> l)
{
for (std::size_t i : l)
{ push_back_by_index(i); }
}
/// @return true iff the dart labeled e can be added at the end of the path.
bool can_be_pushed_by_label(const std::string& e) const
{
Dart_const_handle dh=get_map().get_dart_labeled(e);
if (dh!=nullptr) { return false; }
return can_be_pushed(dh);
}
/// Add the dart having the given labels at the end of this path.
/// Each label is a word, possibly starting by -, words are separated by spaces
void push_back_by_label(const std::string& s)
{
std::istringstream iss(s);
for (std::string e; std::getline(iss, e, ' '); )
{
Dart_const_handle dh=get_map().get_dart_labeled(e);
if (dh!=nullptr) { push_back(dh); }
}
}
void push_back_by_label(std::initializer_list<const char*> l)
{
for (const char* e : l)
{ push_back_by_label(e); }
}
Self& operator+=(const Self& other)
{
m_path.reserve(m_path.size()+other.m_path.size());
// Be careful to the special case when *this==other
// this is the reason of the iend.
for (std::size_t i=0, iend=other.length(); i<iend; ++i)
{ push_back(other[i], false); }
update_is_closed();
return *this;
}
Self operator+(const Self& other) const
{
Self res=*this;
res+=other;
return res;
}
void cut(std::size_t n, bool update_isclosed=true)
{
if (n>=length()) return;
m_path.resize(n);
if (update_isclosed) { update_is_closed(); }
}
/// copy all darts starting from begin and going to the dart before end
/// from this path to new_path.
void copy_rest_of_path(std::size_t begin, std::size_t end,
Self& new_path)
{
CGAL_assertion(begin<=end);
CGAL_assertion(end<=length());
new_path.m_path.reserve(new_path.m_path.size()+end-begin+1);
while(begin!=end)
{
new_path.push_back(get_ith_dart(begin));
++begin;
}
}
void extend_straight_positive(std::size_t nb=1, bool update_isclosed=true)
{
if (is_empty() || nb==0)
{ return; }
m_path.reserve(m_path.size()+nb);
Dart_const_handle d2;
for (std::size_t i=0; i<nb; ++i)
{
d2=get_map().next(get_map().opposite(get_map().next(back()))); // Beta121 for CMaps
if (d2!=get_map().null_dart_handle)
{ push_back(d2, false); }
}
if (update_isclosed) { update_is_closed(); }
}
void extend_straight_negative(std::size_t nb=1, bool update_isclosed=true)
{
if (is_empty() || nb==0)
{ return; }
m_path.reserve(m_path.size()+nb);
Dart_const_handle d2;
for (std::size_t i=0; i<nb; ++i)
{
d2=get_map().opposite2
(get_map().previous(get_map().opposite2
(get_map().previous(get_map().opposite2(back())))));
//beta<2,0,2,0,2>(back()) for CMaps
if (d2!=get_map().null_dart_handle)
{ push_back(d2, false); }
}
if (update_isclosed) { update_is_closed(); }
}
void extend_straight_positive_until(Dart_const_handle dend,
bool update_isclosed=true)
{
if (is_empty() || back()==dend)
{ return; }
Dart_const_handle d2=get_map().next(get_map().opposite2(get_map().next(back()))); // Beta121 for CMaps
while(d2!=dend)
{
push_back(d2, false);
d2=get_map().next(get_map().opposite2(get_map().next(d2)));
}
if (update_isclosed) { update_is_closed(); }
}
void extend_straight_negative_until(Dart_const_handle dend,
bool update_isclosed=true)
{
if (is_empty() || back()==dend)
{ return; }
Dart_const_handle d2=get_map().opposite2
(get_map().previous(get_map().opposite2
(get_map().previous(get_map().opposite2(back())))));
//beta<2,0,2,0,2>(back()) for CMaps
while(d2!=dend)
{
push_back(d2, false);
d2=get_map().opposite2
(get_map().previous(get_map().opposite2
(get_map().previous(get_map().opposite2(d2)))));
}
if (update_isclosed) { update_is_closed(); }
}
void extend_positive_turn(std::size_t nb=1, bool update_isclosed=true)
{
if (is_empty()) { return; }
if (nb==0)
{
if (!get_map().template is_free<2>(back()))
{ push_back(get_map().opposite2(back())); }
return;
}
Dart_const_handle d2=get_map().next(back());
for (std::size_t i=1; i<nb; ++i)
{ d2=get_map().next(get_map().opposite2(d2)); }
if (d2!=get_map().null_dart_handle)
{ push_back(d2, update_isclosed); }
}
void extend_negative_turn(std::size_t nb=1, bool update_isclosed=true)
{
if (is_empty()) { return; }
if (nb==0)
{
if (!get_map().template is_free<2>(back()))
{ push_back(get_map().opposite2(back())); }
return;
}
Dart_const_handle d2=get_map().opposite2(back());
for (std::size_t i=0; i<nb; ++i)
{ d2=get_map().opposite2(get_map().previous(d2)); }
if (d2!=get_map().null_dart_handle)
{ push_back(d2, update_isclosed); }
}
/// Replace edge [i] by the path of darts along the face.
/// Problem of complexity when used many times (like in update_path_randomly).
void push_around_face(std::size_t i, bool update_isclosed=true)
{
CGAL_assertion(i<length());
Self p2(get_map());
std::size_t begin=i;
Dart_const_handle dh=get_map().previous(get_ith_dart(begin));
do
{
p2.push_back(get_map().opposite2(dh));
dh=get_map().previous(dh);
}
while(dh!=get_ith_dart(begin));
p2.m_path.reserve(p2.m_path.size()+length()-begin);
for (std::size_t j=begin+1; j<length(); ++j)
{ p2.push_back(get_ith_dart(j), false); }
cut(begin, false);
m_path.reserve(m_path.size()+p2.length());
for (std::size_t j=0; j<p2.length(); ++j)
{ push_back(p2[j], false); }
if (update_isclosed) { update_is_closed(); }
}
/// Push back a random dart, if the path is empty.
bool initialize_random_starting_dart(CGAL::Random& random,
bool update_isclosed=true)
{
if (!is_empty() || get_map().is_empty()) { return false; }
unsigned int index=random.get_int(0, get_map().darts().capacity());
while (!get_map().darts().is_used(index))
{
++index;
if (index==get_map().darts().capacity()) index=0;
}
push_back(get_map().dart_handle(index), update_isclosed);
return true;
}
bool initialize_random_starting_dart(bool update_isclosed=true)
{
CGAL::Random& random=get_default_random();
return initialize_random_starting_dart(random, update_isclosed);
}
bool extend_path_randomly(CGAL::Random& random,
bool allow_half_turn=true,
bool update_isclosed=true)
{
if (is_empty())
{ return initialize_random_starting_dart(random, update_isclosed); }
Dart_const_handle pend=get_map().opposite2(back());
if (pend==Map::null_handle)
{
if (get_map().is_next_exist(back()))
{ // Here there is no other possibility to extend the path !
push_back(get_map().next(back()), update_isclosed);
return true;
}
else { return false; }
}
Dart_const_handle res=pend;
unsigned int nbedges=0;
do
{
++nbedges;
res=get_map().next(get_map().opposite2(res));
}
while (res!=pend);
//get_int(a,b) returns an int in {a,...,b-1}
unsigned int index=random.get_int((allow_half_turn?0:1), nbedges);
for(unsigned int i=0; i<index; ++i)
{ res=get_map().next(get_map().opposite2(res)); }
CGAL_assertion(allow_half_turn || res!=pend);
push_back(res, update_isclosed);
return true;
}
bool extend_path_randomly(bool allow_half_turn=false,
bool update_isclosed=true)
{
CGAL::Random& random=get_default_random();
extend_path_randomly(random, allow_half_turn, update_isclosed);
}
void generate_random_path(std::size_t length, CGAL::Random& random,
bool update_isclosed=true)
{
m_path.reserve(m_path.size()+length);
for (std::size_t i=0; i<length; ++i)
{ extend_path_randomly(random, true, false); }
if (update_isclosed) { update_is_closed(); }
}
template<typename Path>
void generate_random_path(CGAL::Random& random,
bool update_isclosed=true)
{ generate_random_path(random.get_int(1, 10000), random, update_isclosed); }
template<typename Path>
void generate_random_path(std::size_t length,
bool update_isclosed=true)
{
CGAL::Random& random=get_default_random();
generate_random_path(length, random, update_isclosed);
}
template<typename Path>
void generate_random_path(bool update_isclosed=true)
{
CGAL::Random& random=get_default_random();
generate_random_path(random, update_isclosed);
}
void generate_random_closed_path(std::size_t length, CGAL::Random& random)
{
m_path.reserve(m_path.size()+length);
std::size_t i=0;
while(i<length || !is_closed())
{
extend_path_randomly(random, true, true);
++i;
}
}
void generate_random_closed_path(std::size_t length)
{
CGAL::Random& random=get_default_random();
generate_random_closed_path(length, random);
}
void generate_random_closed_path(CGAL::Random& random)
{ generate_random_closed_path(random.get_int(1, 10000), random); }
void generate_random_closed_path()
{
CGAL::Random& random=get_default_random();
generate_random_closed_path(random.get_int(1, 10000), random);
}
/// Transform the current path by pushing some dart around faces.
/// At the end, the new path is homotopic to the original one.
void update_path_randomly(std::size_t nb, CGAL::Random& random,
bool update_isclosed=true)
{
if (is_empty()) return;
for (unsigned int i=0; i<nb; ++i)
{
push_around_face(random.get_int(0, length()), false);
}
if (update_isclosed) { update_is_closed(); }
}
void update_path_randomly(CGAL::Random& random,
bool update_isclosed=true)
{ update_path_randomly(random.get_int(0, 10000), update_isclosed); }
void update_path_randomly(std::size_t nb, bool update_isclosed=true)
{
CGAL::Random random;
update_path_randomly(nb, random, update_isclosed);
}
void update_path_randomly(bool update_isclosed=true)
{
CGAL::Random& random=get_default_random();
update_path_randomly(random, update_isclosed);
}
/// @Return true if this path is equal to other path, identifying dart 0 of
/// this path with dart start in other path.
bool are_same_paths_from(const Self& other, std::size_t start) const
{
CGAL_assertion(start==0 || start<length());
CGAL_assertion(is_closed() || start==0);
CGAL_assertion(length()==other.length() && is_closed()==other.is_closed());
for(std::size_t i=0; i<length(); ++i)
{
if (get_ith_dart(i)!=other.get_ith_dart(start))
{ return false; }
start=next_index(start);
}
return true;
}
/// @return true if this path is equal to other path. For closed paths, test
/// all possible starting darts. Old quadratic version, new version
/// (operator==) use linear version based on Knuth, Morris, Pratt
bool are_paths_equals(const Self& other) const
{
if (length()!=other.length() || is_closed()!=other.is_closed())
{ return false; }
if (!is_closed())
{ return are_same_paths_from(other, 0); }
for(std::size_t start=0; start<length(); ++start)
{
if (are_same_paths_from(other, start))
{ return true; }
}
return false;
}
/// @return true if this path is equal to other path. For closed paths,
/// equality is achieved whatever the first dart.
bool operator==(const Self& other) const
{
if (length()!=other.length() || is_closed()!=other.is_closed())
{ return false; }
if (!is_closed())
{ return are_same_paths_from(other, 0); }
Self p2(*this); p2+=p2;
// Now we search if other is a sub-motif of p2 <=> *this==other
return boost::algorithm::knuth_morris_pratt_search(p2.m_path.begin(),
p2.m_path.end(),
other.m_path.begin(),
other.m_path.end())
#if BOOST_VERSION>=106200
.first
#endif
!=p2.m_path.end();
}
bool operator!=(const Self& other) const
{ return !(operator==(other)); }
/// @Return true if this path is equal to other path, identifying dart 0 of
/// this path with dart start in other path. other path is given
/// by index of its darts, in text format.
bool are_same_paths_from(const char* other, std::size_t start) const
{
CGAL_assertion(start==0 || start<length());
CGAL_assertion(is_closed() || start==0);
std::string sother(other);
std::istringstream iss(sother);
uint64_t nb;
for(std::size_t i=0; i<length(); ++i)
{
if (!iss.good())
{ return false; }
iss>>nb;
if (nb!=m_map.darts().index(get_ith_dart(start)))
{ return false; }
start=next_index(start);
}
iss>>nb;
if (iss.good())
{ return false; } // There are more elements in other than in this path
return true;
}
/// @return true if this path is equal to other path. For closed paths, test
/// all possible starting darts. other path is given by index of its
/// darts, in text format.
bool operator==(const char* other) const
{
if (!is_closed())
{ return are_same_paths_from(other, 0); }
for(std::size_t start=0; start<length(); ++start)
{
if (are_same_paths_from(other, start))
{ return true; }
}
return false;
}
bool operator!=(const char* other) const
{ return !(operator==(other)); }
/// @return true iff the path is valid; i.e. a sequence of edges two by
/// two adjacent.
bool is_valid() const
{
if (is_empty()) { return !is_closed(); } // an empty past is not closed
for (unsigned int i=1; i<m_path.size(); ++i)
{
/* This assert is long if (!m_map.darts().owns(m_path[i]))
{ return false; } */
if (m_path[i]==nullptr || m_path[i]==m_map.null_dart_handle)
{ return false; }
Dart_const_handle pend=m_map.other_extremity(m_path[i-1]);
if (pend==Map::null_handle) { return false; }
if (!m_map.template belong_to_same_cell<0>(m_path[i], pend))
{ return false; }
}
if (is_closed())
{
Dart_const_handle pend=m_map.other_extremity(back());
if (pend==Map::null_handle) { return false; }
if (!m_map.template belong_to_same_cell<0>(pend, front()))
{ return false; }
}
else
{
Dart_const_handle pend=m_map.other_extremity(back());
if (pend==Map::null_handle) { return true; }
if (m_map.template belong_to_same_cell<0>(pend, front()))
{ return false; }
}
return true;
}
/// Update m_is_closed to true iff the path is closed (i.e. the second
/// extremity of the last dart of the path is the same vertex than the one
/// of the first dart of the path).
void update_is_closed()
{
// CGAL_assertion(is_valid());
if (is_empty()) { m_is_closed=false; }
else
{
Dart_const_handle pend=m_map.other_extremity(back());
if (pend==Map::null_handle) { m_is_closed=false; }
else
{ m_is_closed=m_map.template belong_to_same_cell<0>(m_path[0], pend); }
}
}
/// @return true iff the path does not pass twice through a same edge
/// or a same vertex.
bool is_simple() const
{
typename Map::size_type markvertex=m_map.get_new_mark();
typename Map::size_type markedge=m_map.get_new_mark();
bool res=true;
unsigned int i=0;
for (i=0; res && i<m_path.size(); ++i)
{
if (m_map.is_marked(m_path[i], markvertex)) { res=false; }
else { CGAL::mark_cell<Map, 0>(m_map, m_path[i], markvertex); }
if (m_map.is_marked(m_path[i], markedge)) { res=false; }
else { CGAL::mark_cell<Map, 1>(m_map, m_path[i], markedge); }
}
i=0;
while(m_map.number_of_marked_darts(markedge)>0 ||
m_map.number_of_marked_darts(markvertex)>0)
{
CGAL_assertion(i<m_path.size());
if (m_map.is_marked(m_path[i], markvertex))
{ CGAL::unmark_cell<Map, 0>(m_map, m_path[i], markvertex); }
if (m_map.is_marked(m_path[i], markedge))
{ CGAL::unmark_cell<Map, 1>(m_map, m_path[i], markedge); }
++i;
}
m_map.free_mark(markvertex);
m_map.free_mark(markedge);
return res;
}
/// Reverse the path (i.e. negate its orientation).
void reverse()
{
std::vector<Dart_const_handle> new_path(m_path.size());
for (std::size_t i=0; i<m_path.size()/2; ++i)
{
m_path[m_path.size()-1-i]=
m_map.opposite2(m_path[m_path.size()-1-i]);
m_path[i]=m_map.opposite2(m_path[i]);
std::swap(m_path[i], m_path[m_path.size()-1-i]);
}
if (m_path.size()%2==1)
{
m_path[m_path.size()/2+1]=
m_map.opposite2(m_path[m_path.size()/2+1]);
}
}
/// If the given path is opened, close it by doing the same path that the
/// first one in reverse direction.
void close()
{ // TODO follow shortest path ?
if (!is_closed())
{
for (int i=m_path.size()-1; i>=0; --i)
{ m_path.push_back(m_map.opposite2(get_ith_dart(i)), false); }
m_is_closed=true;
}
}
/// @return the turn between dart number i and dart number i+1.
/// (turn is position of the second edge in the cyclic ordering of
/// edges starting from the first edge around the second extremity
/// of the first dart)
std::size_t next_positive_turn(std::size_t i) const
{
// CGAL_assertion(is_valid());
CGAL_assertion(i<m_path.size());
CGAL_assertion (is_closed() || i<length()-1);
return m_map.positive_turn(get_ith_dart(i), get_next_dart(i));
}
/// Same than next_positive_turn but turning in reverse orientation around vertex.
std::size_t next_negative_turn(std::size_t i) const
{
// CGAL_assertion(is_valid());
CGAL_assertion(i<m_path.size());
CGAL_assertion (is_closed() || i<length()-1);
return m_map.negative_turn(get_ith_dart(i), get_next_dart(i));
}
std::vector<std::size_t> compute_positive_turns() const
{
std::vector<std::size_t> res;
if (is_empty()) return res;
std::size_t i;
for (i=0; i<m_path.size()-1; ++i)
{ res.push_back(next_positive_turn(i)); }
if (is_closed())
{ res.push_back(next_positive_turn(i)); }
return res;
}
std::vector<std::size_t> compute_negative_turns() const
{
std::vector<std::size_t> res;
if (is_empty()) return res;
std::size_t i;
for (i=0; i<m_path.size()-1; ++i)
{ res.push_back(next_negative_turn(i)); }
if (is_closed())
{ res.push_back(next_negative_turn(i)); }
return res;
}
std::vector<std::size_t> compute_turns(bool positive) const
{ return (positive?compute_positive_turns():compute_negative_turns()); }
bool same_turns_from(const char* turns,
const std::vector<std::size_t>& resplus,
const std::vector<std::size_t>& resmoins,
std::size_t start) const
{
CGAL_assertion(start==0 || start<resplus.size());
CGAL_assertion(resplus.size()==resmoins.size());
std::string sturns(turns);
std::istringstream iss(sturns);
int64_t nb;
for(std::size_t i=0; i<resplus.size(); ++i)
{
if (!iss.good())
{ return false; }
iss>>nb;
if ((nb>=0 && resplus[start]!=nb) ||
(nb<0 && resmoins[start]!=-nb))
{ return false; }
start=next_index(start);
}
iss>>nb;
if (iss.good())
{ return false; } // There are more elements in turns than in res
return true;
}
bool same_turns(const char* turns) const
{
std::vector<std::size_t> resplus=compute_positive_turns();
std::vector<std::size_t> resmoins=compute_negative_turns();
if (!is_closed())
{ return same_turns_from(turns, resplus, resmoins, 0); }
for (std::size_t start=0; start<length(); ++start)
{
if (same_turns_from(turns, resplus, resmoins, start))
{ return true; }
}
return false;
}
void display_positive_turns() const
{
std::cout<<"+(";
std::vector<std::size_t> res=compute_positive_turns();
for (std::size_t i=0; i<res.size(); ++i)
{ std::cout<<res[i]<<(i<res.size()-1?" ":""); }
std::cout<<")";
}
void display_negative_turns() const
{
std::cout<<"-(";
std::vector<std::size_t> res=compute_negative_turns();
for (std::size_t i=0; i<res.size(); ++i)
{ std::cout<<res[i]<<(i<res.size()-1?" ":""); }
std::cout<<")";
}
void display_pos_and_neg_turns() const
{
display_positive_turns();
std::cout<<" ";
display_negative_turns();
}
void display() const
{
for (std::size_t i=0; i<length(); ++i)
{
std::cout<<m_map.darts().index(get_ith_dart(i));
if (i<length()-1) { std::cout<<" "; }
}
if (is_closed())
{ std::cout<<" c "; } //<<m_map.darts().index(get_ith_dart(0)); }
}
friend std::ostream& operator<<(std::ostream& os, const Self& p)
{
p.display();
return os;
}
protected:
const typename Get_map<Mesh, Mesh>::storage_type m_map; // The underlying map
std::vector<Dart_const_handle> m_path; /// The sequence of darts
bool m_is_closed; /// True iff the path is a cycle
};
} // namespace Surface_mesh_topology
} // namespace CGAL
#endif // CGAL_PATH_ON_SURFACE_H //
// EOF //