cgal/Kernel_23/doc/Kernel_23/CGAL/Vector_3.h

288 lines
5.7 KiB
C++

namespace CGAL {
/*!
\ingroup kernel_classes3
An object of the class `Vector_3` is a vector in the three-dimensional
vector space \f$ \mathbb{R}^3\f$. Geometrically spoken a vector is the difference
of two points \f$ p_2\f$, \f$ p_1\f$ and denotes the direction and the distance
from \f$ p_1\f$ to \f$ p_2\f$.
\cgal defines a symbolic constant \ref NULL_VECTOR. We
will explicitly state where you can pass this constant as an argument
instead of a vector initialized with zeros.
\cgalModels `Kernel::Vector_3`
\sa `cross_product_grp`
\sa `determinant_grp`
*/
template< typename Kernel >
class Vector_3 {
public:
/// \name Types
/// @{
/*!
An iterator for enumerating the
%Cartesian coordinates of a vector.
*/
typedef unspecified_type Cartesian_const_iterator;
/// @}
/// \name Creation
/// @{
/*!
introduces the vector `b-a`.
*/
Vector_3(const Point_3<Kernel> &a, const Point_3<Kernel> &b);
/*!
introduces the vector `s.target()-s.source()`.
*/
Vector_3(const Segment_3<Kernel> &s);
/*!
introduces a vector having the same direction as `r`.
*/
Vector_3(const Ray_3<Kernel> &r);
/*!
introduces a vector having the same direction as `l`.
*/
Vector_3(const Line_3<Kernel> &l);
/*!
introduces a null vector `v`.
*/
Vector_3(const Null_vector &NULL_VECTOR);
/*!
introduces a vector `v` initialized to `(x, y, z)`.
*/
Vector_3(int x, int y, int z);
/*!
introduces a vector `v` initialized to `(x, y, z).
*/
Vector_3(double x, double y, double z);
/*!
introduces a vector `v` initialized to `(hx/hw, hy/hw, hz/hw).
*/
Vector_3(const Kernel::RT &hx, const Kernel::RT &hy, const Kernel::RT &hz, const Kernel::RT &hw = RT(1));
/*!
introduces a vector `v` initialized to `(x, y, z)`.
*/
Vector_3(const Kernel::FT &x, const Kernel::FT &y, const Kernel::FT &z);
/// @}
/// \name Coordinate Access
/// There are two sets of coordinate access functions, namely to the
/// homogeneous and to the %Cartesian coordinates. They can be used
/// independently from the chosen kernel model. Note that you do not
/// loose information with the homogeneous representation, because the
/// `FieldNumberType` is a quotient.
/// @{
/*!
returns the homogeneous \f$ x\f$ coordinate.
*/
Kernel::RT hx() const;
/*!
returns the homogeneous \f$ y\f$ coordinate.
*/
Kernel::RT hy() const;
/*!
returns the homogeneous \f$ z\f$ coordinate.
*/
Kernel::RT hz() const;
/*!
returns the homogenizing coordinate.
*/
Kernel::RT hw() const;
/*!
returns the `x`-coordinate of `v`, that is `hx()`/`hw()`.
*/
Kernel::FT x() const;
/*!
returns the `y`-coordinate of `v`, that is `hy()`/`hw()`.
*/
Kernel::FT y() const;
/*!
returns the `z` coordinate of `v`, that is `hz()`/`hw()`.
*/
Kernel::FT z() const;
/// @}
/// \name Convenience Operations
/// The following operations are for convenience and for compatibility
/// with higher dimensional vectors. Again they come in a %Cartesian
/// and homogeneous flavor.
/// @{
/*!
returns the i'th homogeneous coordinate of `v`.
\pre \f$ 0\leq i \leq3\f$.
*/
Kernel::RT homogeneous(int i) const;
/*!
returns the i'th %Cartesian coordinate of `v`.
\pre \f$ 0\leq i \leq2\f$.
*/
Kernel::FT cartesian(int i) const;
/*!
returns `cartesian(i)`.
\pre \f$ 0\leq i \leq2\f$.
*/
Kernel::FT operator[](int i) const;
/*!
returns an iterator to the %Cartesian coordinates
of `v`, starting with the 0th coordinate.
*/
Cartesian_const_iterator cartesian_begin() const;
/*!
returns an off the end iterator to the %Cartesian
coordinates of `v`.
*/
Cartesian_const_iterator cartesian_end() const;
/*!
returns the dimension (the constant 3).
*/
int dimension() const;
/*!
returns the vector obtained by applying `t` on `v`.
*/
Vector_3<Kernel> transform(const Aff_transformation_3<Kernel> &t) const;
/*!
returns the direction of `v`.
*/
Direction_3<Kernel> direction() const;
/// @}
/// \name Operators
/// @{
/*!
Test for equality: two vectors are equal, iff their \f$ x\f$, \f$ y\f$
and \f$ z\f$ coordinates are equal. You can compare a vector with the
`NULL_VECTOR`.
*/
bool operator==(const Vector_3<Kernel> &w) const;
/*!
Test for inequality. You can compare a vector with the
`NULL_VECTOR`.
*/
bool operator!=(const Vector_3<Kernel> &w) const;
/*!
Addition.
*/
Vector_3<Kernel> operator+(const Vector_3<Kernel> &w) const;
/*!
Addition.
*/
Vector_3<Kernel>& operator+=(const Vector_3<Kernel> &w);
/*!
Subtraction.
*/
Vector_3<Kernel> operator-(const Vector_3<Kernel> &w) const;
/*!
Subtraction.
*/
Vector_3<Kernel>& operator-=(const Vector_3<Kernel> &w);
/*!
Returns the opposite vector.
*/
Vector_3<Kernel> operator-() const;
/*!
Division by a scalar.
*/
Vector_3<Kernel> operator/(const Kernel::RT &s) const;
/*!
Division by a scalar.
*/
Vector_3<Kernel>& operator/=(const Kernel::RT &s);
/*!
returns the scalar product (= inner product) of the two vectors.
*/
Kernel::FT operator*(const Vector_3<Kernel> &w) const;
/*!
Multiplication by a scalar.
*/
Vector_3<Kernel>& operator*=(const Kernel::FT &s);
/// @}
/*!
returns the squared length of `v`.
*/
Kernel::FT squared_length() const;
}; /* end Vector_3 */
/// \ingroup Kernel_operator_prod
///@{
/*!
Multiplication with a scalar from the right.
\relates Vector_3
*/
Vector_3<Kernel>
operator*(const Vector_3<Kernel> &v, const Kernel::RT &s);
/*!
Multiplication with a scalar from the right.
\relates Vector_3
*/
Vector_3<Kernel>
operator*(const Vector_3<Kernel> &v, const Kernel::FT &s);
/*!
Multiplication with a scalar from the left.
\relates Vector_3
*/
Vector_3<Kernel>
operator*(const Kernel::RT &s, const Vector_3<Kernel> &v);
/*!
Multiplication with a scalar from the left.
\relates Vector_3
*/
Vector_3<Kernel>
operator*(const Kernel::FT &s, const Vector_3<Kernel> &v);
/// @}
} /* end namespace CGAL */