cgal/Classification/test/Classification/test_classification_point_s...

151 lines
5.0 KiB
C++

#if defined (_MSC_VER) && !defined (_WIN64)
#pragma warning(disable:4244) // boost::number_distance::distance()
// converts 64 to 32 bits integers
#endif
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <string>
#define CGAL_CLASSIFICATION_VERBOSE
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Classification.h>
#include <CGAL/Point_set_3.h>
#include <CGAL/Random.h>
typedef CGAL::Simple_cartesian<double> Kernel;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
typedef CGAL::Point_set_3<Point> Point_set;
typedef Point_set::Point_map Point_map;
typedef Kernel::Iso_cuboid_3 Iso_cuboid_3;
namespace Classification = CGAL::Classification;
typedef Classification::Label_handle Label_handle;
typedef Classification::Feature_handle Feature_handle;
typedef Classification::Label_set Label_set;
typedef Classification::Feature_set Feature_set;
typedef Classification::Sum_of_weighted_features_classifier Classifier;
typedef Classification::Point_set_feature_generator<Kernel, Point_set, Point_map> Feature_generator;
typedef Point_set::Vector_map Vector_map;
typedef Point_set::Property_map<std::size_t> Size_t_map;
typedef Point_set::Property_map<CGAL::IO::Color> Color_map;
int main (int, char**)
{
Point_set pts;
bool map_added = false;
Vector_map normal_map;
Size_t_map echo_map;
Color_map color_map;
map_added = pts.add_normal_map().second;
assert (map_added);
normal_map = pts.normal_map();
std::tie (echo_map, map_added) = pts.add_property_map<std::size_t> ("echo");
assert (map_added);
std::tie (color_map, map_added) = pts.add_property_map<CGAL::IO::Color> ("color");
assert (map_added);
for (std::size_t i = 0; i < 1000; ++ i)
{
Point_set::iterator it
= pts.insert (Point (CGAL::get_default_random().get_double(),
CGAL::get_default_random().get_double(),
CGAL::get_default_random().get_double()),
Vector (CGAL::get_default_random().get_double(),
CGAL::get_default_random().get_double(),
CGAL::get_default_random().get_double()));
echo_map[*it] = std::size_t(CGAL::get_default_random().get_int(0, 4));
color_map[*it] = CGAL::IO::Color ((unsigned char)(CGAL::get_default_random().get_int(0, 255)),
(unsigned char)(CGAL::get_default_random().get_int(0, 255)),
(unsigned char)(CGAL::get_default_random().get_int(0, 255)));
}
Feature_set features;
Feature_generator generator (pts, pts.point_map(), 5); // using 5 scales
#ifdef CGAL_LINKED_WITH_TBB
features.begin_parallel_additions();
#endif
generator.generate_point_based_features(features);
generator.generate_normal_based_features(features, normal_map);
generator.generate_color_based_features(features, color_map);
generator.generate_echo_based_features(features, echo_map);
#ifdef CGAL_LINKED_WITH_TBB
features.end_parallel_additions();
#endif
assert (generator.number_of_scales() == 5);
assert (features.size() == 59);
Label_set labels;
std::vector<int> training_set (pts.size(), -1);
for (std::size_t i = 0; i < 20; ++ i)
{
std::ostringstream oss;
oss << "label_" << i;
Label_handle lh = labels.add(oss.str().c_str());
for (std::size_t j = 0; j < 10; ++ j)
training_set[std::size_t(CGAL::get_default_random().get_int(0, int(training_set.size())))] = int(i);
}
assert (labels.size() == 20);
Classifier classifier (labels, features);
classifier.train<CGAL::Sequential_tag> (training_set, 800);
#ifdef CGAL_LINKED_WITH_TBB
classifier.train<CGAL::Parallel_tag> (training_set, 800);
#endif
std::vector<int> label_indices(pts.size(), -1);
Classification::classify<CGAL::Sequential_tag>
(pts, labels, classifier, label_indices);
Classification::classify_with_local_smoothing<CGAL::Sequential_tag>
(pts, pts.point_map(), labels, classifier,
generator.neighborhood().sphere_neighbor_query(0.01f),
label_indices);
Classification::classify_with_graphcut<CGAL::Sequential_tag>
(pts, pts.point_map(), labels, classifier,
generator.neighborhood().k_neighbor_query(12),
0.2f, 10, label_indices);
#ifdef CGAL_LINKED_WITH_TBB
Classification::classify<CGAL::Sequential_tag>
(pts, labels, classifier, label_indices);
Classification::classify_with_local_smoothing<CGAL::Sequential_tag>
(pts, pts.point_map(), labels, classifier,
generator.neighborhood().sphere_neighbor_query(0.01f),
label_indices);
Classification::classify_with_graphcut<CGAL::Sequential_tag>
(pts, pts.point_map(), labels, classifier,
generator.neighborhood().k_neighbor_query(12),
0.2f, 10, label_indices);
#endif
Classification::Evaluation evaluation (labels, training_set, label_indices);
return EXIT_SUCCESS;
}