cgal/Packages/Optimisation_doc/doc_tex/basic/Optimisation/user_part.tex

65 lines
2.5 KiB
TeX

% =============================================================================
% The CGAL User Manual
% Chapter: Geometric Optimisation
% -----------------------------------------------------------------------------
% file : doc_tex/basic/Optimisation/user_part.tex
% package: Optimisation_doc
% author : Sven Schönherr <sven@inf.ethz.ch>
% -----------------------------------------------------------------------------
% $Revision$
% $Date$
% =============================================================================
%\section{Introduction}
This chapter describes routines for solving geometric optimisation
problems.
There are algorithms for computing and updating the
\begin{itemize}
\item smallest enclosing circle (\ccc{Min_circle_2<Traits>}), the
\item smallest enclosing ellipse (\ccc{Min_ellipse_2<Traits>}), the
\item smallest enclosing sphere (\ccc{Min_sphere_d<Traits>}), and the
\item smallest enclosing annulus (\ccc{Min_annulus_d<Traits>}),
respectively,
\end{itemize}
of a finite point set.
We provide several functions to compute the smallest enclosing region
$r$ of a planar convex polygon $P$ where $r$ is to be chosen from a
set $\mathcal{R}$ of candidate regions (\ccc{min_rectangle_2},
\ccc{min_parallelogram_2}, \ccc{min_strip_2}).
An algorithm for computing and updating the (squared) distance of two
convex polytopes is described (\ccc{Polytope_distance_d}).
The remaining algorithms can be used for searching in matrices with
specific properties and some applications. In particular, there are
general implementations of
\begin{itemize}
\item monotone matrix search (\ccc{monotone_matrix_search}),
which can be applied to compute
\begin{itemize}
\item extremal polygons of a convex polygon
(\ccc{maximum_area_inscribed_k_gon_2},
\ccc{maximum_perimeter_inscribed_k_gon_2},
\ccc{extremal_polygon_2}) or
\item all furthest neighbors for the vertices of a convex polygon
(\ccc{all_furthest_neighbors_2}), and
\end{itemize}
\item sorted matrix search (\ccc{sorted_matrix_search}),
which can be used to compute the $p$-centers of a planar point set
(\ccc{rectangular_p_center_2}).
\end{itemize}
%\subsubsection*{Assertions}
%The optimisation code uses infix \ccc{OPTIMISATION} in the assertions,
%e.g.\ defining the compiler flag
%\ccc{CGAL_OPTIMISATION_NO_PRECONDITIONS} switches precondition
%checking off, cf.~\cgalReferToAssertions
% ===== EOF ===================================================================