mirror of https://github.com/CGAL/cgal
504 lines
18 KiB
Plaintext
504 lines
18 KiB
Plaintext
\documentclass[a4paper,11pt,twoside]{article}
|
|
\usepackage{Lweb}
|
|
|
|
\begin{document}
|
|
\title{Hyperplanes with Rational Coordinates in d-Space\\
|
|
(class HyperplaneHd)}
|
|
\author{M. Seel}
|
|
\date{\today}
|
|
\maketitle
|
|
\tableofcontents
|
|
\newpage
|
|
|
|
@ \section{The Manual Page of class HyperplaneHd}
|
|
|
|
\input HyperplaneHd.man
|
|
|
|
@ \section{The Implementation of class HyperplaneHd}
|
|
|
|
The type HyperplaneHd is an item class with representation class georep. It
|
|
shares this representation class with points, vectors, and
|
|
directions. We derive HyperplaneHd from handle\_base and derive georep from
|
|
handle\_rep. This gives us reference counting for free. We give all
|
|
implementations which are trivial directly in the header file and
|
|
postpone all others to the next section. Aside from this the header
|
|
file is in one-to-one correspondence to the manual page.
|
|
|
|
<<HyperplaneHd.h>>=
|
|
//---------------------------------------------------------------------
|
|
// file generated by notangle from HyperplaneHd.lw
|
|
// please debug or modify noweb file
|
|
// coding: K. Mehlhorn, M. Seel
|
|
//---------------------------------------------------------------------
|
|
|
|
#ifndef CGAL_HYPERPLANEHD_H
|
|
#define CGAL_HYPERPLANEHD_H
|
|
|
|
#ifndef NOCGALINCL
|
|
#include <CGAL/basic.h>
|
|
#include <CGAL/Quotient.h>
|
|
#endif
|
|
#include <CGAL/Kernel_d/PointHd.h>
|
|
#include <CGAL/Kernel_d/VectorHd.h>
|
|
#include <CGAL/Kernel_d/Aff_transformationHd.h>
|
|
|
|
CGAL_BEGIN_NAMESPACE
|
|
|
|
<<prototyping>>
|
|
<<defining HyperplaneHd>>
|
|
|
|
CGAL_END_NAMESPACE
|
|
#endif // CGAL_HYPERPLANEHD_H
|
|
|
|
<<HyperplaneHd.C>>=
|
|
//---------------------------------------------------------------------
|
|
// file generated by notangle from HyperplaneHd.lw
|
|
// please debug or modify noweb file
|
|
// coding: K. Mehlhorn, M. Seel
|
|
//---------------------------------------------------------------------
|
|
#ifndef CGAL_HYPERPLANEHD_C
|
|
#define CGAL_HYPERPLANEHD_C
|
|
CGAL_BEGIN_NAMESPACE
|
|
|
|
<<implementing HyperplaneHd>>
|
|
|
|
CGAL_END_NAMESPACE
|
|
#endif // CGAL_HYPERPLANEHD_C
|
|
|
|
|
|
@ \subsection{The Datatype}
|
|
And now for the class definition. We interleave the prototyping and
|
|
the implementation.
|
|
<<defining HyperplaneHd>>=
|
|
/*{\Manpage{Hyperplane_d}{R}{Hyperplanes in d-space}{h}}*/
|
|
/*{\Msubst
|
|
Hd<RT,LA>#_d<R>
|
|
HyperplaneHd#Hyperplane_d
|
|
Quotient<RT>#FT
|
|
}*/
|
|
|
|
template <class _RT, class _LA>
|
|
class HyperplaneHd : public Handle_for< Tuple_d<_RT,_LA> > {
|
|
typedef Tuple_d<_RT,_LA> Tuple;
|
|
typedef Handle_for<Tuple> Base;
|
|
typedef HyperplaneHd<_RT,_LA> Self;
|
|
|
|
/*{\Mdefinition An instance of data type |HyperplaneHd| is an
|
|
oriented hyperplane in $d$ - dimensional space. A hyperplane $h$ is
|
|
represented by coefficients $(c_0,c_1,\ldots,c_d)$ of type |RT|. At
|
|
least one of $c_0$ to $c_{ d - 1 }$ must be non-zero. The plane
|
|
equation is $\sum_{ 0 \le i < d } c_i x_i + c_d = 0$, where $x_0$ to
|
|
$x_{d-1}$ are Cartesian point coordinates.
|
|
For a particular $x$ the sign of $\sum_{ 0 \le i < d } c_i x_i +
|
|
c_d$ determines the position of a point $x$ with respect to the
|
|
hyperplane (on the hyperplane, on the negative side, or on the
|
|
positive side).
|
|
|
|
There are two equality predicates for hyperplanes. The (weak)
|
|
equality predicate (|weak_equality|) declares two hyperplanes equal if
|
|
they consist of the same set of points, the strong equality predicate
|
|
(|operator==|) requires in addition that the negative halfspaces
|
|
agree. In other words, two hyperplanes are strongly equal if their
|
|
coefficient vectors are positive multiples of each other and they are
|
|
(weakly) equal if their coefficient vectors are multiples of each
|
|
other.}*/
|
|
|
|
const typename _LA::Vector& vector_rep() const { return ptr->v; }
|
|
_RT& entry(int i) const { return ptr->v[i]; }
|
|
void invert_rep() { ptr->invert(); }
|
|
|
|
public:
|
|
/*{\Mtypes 4}*/
|
|
|
|
typedef _RT RT;
|
|
/*{\Mtypemember the ring type.}*/
|
|
typedef Quotient<_RT> FT;
|
|
/*{\Mtypemember the field type.}*/
|
|
typedef _LA LA;
|
|
/*{\Mtypemember the linear algebra layer.}*/
|
|
typedef typename Tuple::const_iterator Coefficient_const_iterator;
|
|
/*{\Mtypemember a read-only iterator for the coefficients.}*/
|
|
|
|
/*{\Mcreation h 4}*/
|
|
|
|
/*{\Moptions nextwarning=no}*/
|
|
HyperplaneHd(int d = 0) : Base( Tuple(d+1) ) {}
|
|
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname|
|
|
initialized to some hyperplane in $d$ - dimensional space. }*/
|
|
|
|
template <class InputIterator>
|
|
HyperplaneHd(int d, InputIterator first, InputIterator last, RT D)
|
|
: Base( Tuple(d+1,first,last,D) ) {}
|
|
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname|
|
|
initialized to the hyperplane with coefficients |set [first,last)| and
|
|
|D|. \precond |size [first,last) == d| and the value type of
|
|
InputIterator is |RT|.}*/
|
|
|
|
template <class InputIterator>
|
|
HyperplaneHd(int d, InputIterator first, InputIterator last)
|
|
: Base( Tuple(d+1,first,last) ) {}
|
|
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname|
|
|
initialized to the hyperplane with coefficients |set [first,last)|.
|
|
\precond |size [first,last) == d+1| and the value type of
|
|
InputIterator is |RT|.}*/
|
|
|
|
template <class ForwardIterator>
|
|
HyperplaneHd(ForwardIterator first, ForwardIterator last,
|
|
const PointHd<RT,LA>& o,
|
|
Oriented_side side = Oriented_side(0))
|
|
/*{\Mcreate constructs some hyperplane that passes through the points
|
|
in |set [first,last)|. If |side| is |ON_POSITIVE_SIDE| or
|
|
|ON_NEGATIVE_SIDE| then |o| is on that side of the constructed
|
|
hyperplane. \precond A hyperplane with the stated properties must
|
|
exist. The value type of |ForwardIterator| is |PointHd<RT,LA>|. }*/
|
|
|
|
@ We want to construct a hyperplane that passes through a set |P = set
|
|
[first,last)| of points in $d$-dimensional space and has a specified
|
|
point $o$ on a specified side. We simply have to find a vector $x$
|
|
such that $P^T \cdot x = 0$ for every point in $P$. This amounts to
|
|
solving a homogeneous linear system. If the system has only a trivial
|
|
solution the task at hand is unsolvable and we report an error. So
|
|
assume that the system has a non-trivial solution. Let vectors $s_1,
|
|
\ldots, s_k$ span the solution space. if |side == ZERO| we may take
|
|
any $s_j$ as the normal vector of our hyperplane. if $|side| \neq 0$
|
|
and the task at hand is solvable there must be a $j$ such that $o^T
|
|
\cdot s_j \neq 0$. We take $s_j$ as the normal vector of our
|
|
hyperplane and use |o| to normalize the hyperplane equation.
|
|
<<defining HyperplaneHd>>=
|
|
: Base( Tuple(o.dimension()+1) ) {
|
|
TUPLE_DIM_CHECK(first,last,hyperplane::construction);
|
|
CGAL_assertion_msg((first->dimension()==o.dimension()),
|
|
"hyperplane::construction: dimensions disagree.");
|
|
|
|
int d = first->dimension(); // we are in $d$ - dimensional space
|
|
int m = std::distance(first,last); // |P| has $m$ points
|
|
typename LA::Matrix A(m,d + 1);
|
|
|
|
for (int i = 0; i < m; i++) { /* define $i$-th equation */
|
|
for (int j = 0; j <= d; j++)
|
|
A(i,j) = first->homogeneous(j); // $j$ - th coord of $i$-th point
|
|
++first;
|
|
}
|
|
typename LA::Matrix spanning_vecs; // columns span solution
|
|
int dim = LA::homogeneous_linear_solver(A,spanning_vecs);
|
|
|
|
if (dim == 0)
|
|
CGAL_assertion_msg(0,"HyperplaneHd::constructor: \
|
|
set P is full dimensional.");
|
|
|
|
if (side == ON_ORIENTED_BOUNDARY) {
|
|
ptr->v = spanning_vecs.column(0);
|
|
return;
|
|
}
|
|
|
|
RT sum = 0;
|
|
int j;
|
|
for (j = 0; j < dim; j++) {
|
|
for (int i = 0; i <= d; i++)
|
|
sum += spanning_vecs(i,j)*o.homogeneous(i);
|
|
if (sum != 0) break;
|
|
}
|
|
|
|
if (j == dim)
|
|
CGAL_assertion_msg(0,"HyperplaneHd::constructor: \
|
|
cannot use o to determine side.");
|
|
|
|
ptr->v = spanning_vecs.column(j);
|
|
if ( CGAL_NTS sign(sum) > 0 && side == ON_NEGATIVE_SIDE ||
|
|
CGAL_NTS sign(sum) < 0 && side == ON_POSITIVE_SIDE)
|
|
invert_rep();
|
|
}
|
|
|
|
HyperplaneHd(const PointHd<RT,LA>& p, const DirectionHd<RT,LA>& dir)
|
|
/*{\Mcreate constructs the hyperplane with normal direction |dir|
|
|
that passes through $p$. The direction |dir| points into the positive
|
|
side. \precond |dir| is not the trivial direction.}*/
|
|
@ Given a point |p| and a direction |dir| we want to construct a hyperplane
|
|
with normal direction |dir| and passing through |p|. We set the coefficient
|
|
vector $x = (|dir|_0, \ldots,|dir|_{d-1},D)$ for some unknown $D$ and then
|
|
use |p| to determine $D$ such that $p^T \cdot x = 0$.
|
|
Note that $D$ will be rational in general.
|
|
<<defining HyperplaneHd>>=
|
|
: Base( Tuple(p.dimension()+1) ) {
|
|
int d = p.dimension();
|
|
CGAL_assertion_msg((dir.dimension() == d), "HyperplaneHd::constructor: \
|
|
parameter dimensions disagree.");
|
|
CGAL_assertion_msg((dir.dimension() == d), "HyperplaneHd::constructor: \
|
|
parameter dimensions disagree.");
|
|
|
|
RT sum = 0;
|
|
for (int i = 0; i < d; i++) {
|
|
sum += dir.delta(i)*p.homogeneous(i);
|
|
entry(i) = dir.delta(i)*p.homogeneous(d);
|
|
}
|
|
entry(d) = -sum;
|
|
}
|
|
|
|
HyperplaneHd(const RT& a, const RT& b, const RT& c) :
|
|
Base( Tuple(a,b,c) ) {}
|
|
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in
|
|
$2$-dimensional space with equation $ax+by+c=0$. }*/
|
|
|
|
HyperplaneHd(int a, int b, int c) :
|
|
Base( Tuple(RT(a),RT(b),RT(c)) ) {}
|
|
|
|
HyperplaneHd(const RT& a, const RT& b, const RT& c, const RT& d) :
|
|
Base( Tuple(a,b,c,d) ) {}
|
|
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in
|
|
$3$-dimensional space with equation $ax+by+cz+d=0$. }*/
|
|
|
|
HyperplaneHd(int a, int b, int c, int d) :
|
|
Base( Tuple(RT(a),RT(b),RT(c),RT(d)) ) {}
|
|
|
|
HyperplaneHd(const HyperplaneHd<RT,LA>& h) : Base(h) {}
|
|
~HyperplaneHd() {}
|
|
|
|
/*{\Moperations 4 2}*/
|
|
|
|
int dimension() const { return ptr->size()-1; }
|
|
/*{\Mop returns the dimension of |\Mvar|. }*/
|
|
|
|
RT operator[](int i) const
|
|
/*{\Marrop returns the $i$-th coefficient of |\Mvar|.
|
|
\precond $0 \leq i \leq d$.}*/
|
|
{ CGAL_assertion_msg((0<=i && i<=(dimension())), "HyperplaneHd::op[]:\
|
|
index out of range."); return entry(i); }
|
|
|
|
RT coefficient(int i) const { return entry(i); }
|
|
/*{\Mop returns the $i$-th coefficient of |\Mvar|.
|
|
\precond $0 \leq i \leq d$.}*/
|
|
|
|
const typename LA::Vector& coefficient_vector() const
|
|
/*{\Xop returns the coefficient vector $(c_0,\ldots,c_d)$ of |\Mvar|. }*/
|
|
{ return vector_rep(); }
|
|
|
|
Coefficient_const_iterator coefficients_begin() const
|
|
/*{\Mop returns an iterator pointing to the first coefficient.}*/
|
|
{ return ptr->begin(); }
|
|
|
|
Coefficient_const_iterator coefficients_end() const
|
|
/*{\Mop returns an iterator pointing beyond the last coefficient.}*/
|
|
{ return ptr->end(); }
|
|
|
|
VectorHd<RT,LA> orthogonal_vector() const;
|
|
/*{\Mop returns the orthogonal vector of |\Mvar|. It points from the
|
|
negative halfspace into the positive halfspace and its
|
|
homogeneous coordinates are $(c_0, \ldots, c_{d - 1},1)$. }*/
|
|
@ Any multiple of $(c_0,\ldots,c_{d-1})$ is a normal vector. We want the
|
|
vector to point from the negative to the positive halfspace. Recall
|
|
that our hyperplane has the equation $c_d + \sum (c_i z_i) = 0$, where
|
|
the $z_i$ are Cartesian point coordinates. The point $z = -c_d\cdot
|
|
c/{\parallel c \parallel}$ is on the hyperplane, the point $z_n = (-1
|
|
-c_d)\cdot c/{\parallel c \parallel}$ is in the negative halfspace and
|
|
the point $z_p = (1 - c_d)\cdot c/{\parallel c \parallel}$ is in the
|
|
positive halfspace. Thus any positive multiple of $c$ is the desired
|
|
orthogonal vector. We take $(c_0,\ldots,c_{d-1},1)$.
|
|
<<implementing HyperplaneHd>>=
|
|
template <class RT, class LA>
|
|
VectorHd<RT,LA> HyperplaneHd<RT,LA>::
|
|
orthogonal_vector() const
|
|
{ VectorHd<RT,LA> res(*this);
|
|
res.copy_on_write();
|
|
res.entry(dimension()) = 1;
|
|
return res;
|
|
}
|
|
|
|
<<defining HyperplaneHd>>=
|
|
DirectionHd<RT,LA> orthogonal_direction() const
|
|
/*{\Mop returns the orthogonal direction of |\Mvar|. It points from the
|
|
negative halfspace into the positive halfspace. }*/
|
|
{ return orthogonal_vector().direction(); }
|
|
|
|
RT value_at(const PointHd<RT,LA>& p) const
|
|
/*{\Xop returns the value of |\Mvar| at the point |p|, i.e.,
|
|
$\sum_{ 0 \le i \le d } h_i p_i$.\\
|
|
Warning: this value depends on the particular representation
|
|
of |\Mvar| and |p|. }*/
|
|
{ CGAL_assertion_msg((dimension()==p.dimension()),"HyperplaneHd::value_at:\
|
|
dimensions disagree.");
|
|
return vector_rep()*p.vector_rep();
|
|
}
|
|
|
|
Oriented_side oriented_side(const PointHd<RT,LA>& p) const
|
|
/*{\Mop returns the side of the hyperplane |\Mvar| containing $p$. }*/
|
|
/*{\Mtext \setopdims{2cm}{2cm}}*/
|
|
{
|
|
CGAL_assertion_msg((dimension()==p.dimension()),
|
|
"HyperplaneHd::oriented_side: dimensions do not agree.");
|
|
return Oriented_side(CGAL_NTS sign(value_at(p)));
|
|
}
|
|
|
|
bool has_on(const PointHd<RT,LA>& p) const
|
|
/*{\Mop returns true iff point |p| lies on the hyperplane |\Mvar|. }*/
|
|
{ return (oriented_side(p) == ON_ORIENTED_BOUNDARY); }
|
|
|
|
bool has_on_boundary(const PointHd<RT,LA>& p) const
|
|
/*{\Mop returns true iff point |p| lies on the boundary of
|
|
hyperplane |\Mvar|. }*/
|
|
{ return (oriented_side(p) == ON_ORIENTED_BOUNDARY); }
|
|
|
|
bool has_on_positive_side(const PointHd<RT,LA>& p) const
|
|
/*{\Mop returns true iff point |p| lies on the positive side of
|
|
hyperplane |\Mvar|. }*/
|
|
{ return (oriented_side(p) == ON_POSITIVE_SIDE); }
|
|
|
|
bool has_on_negative_side(const PointHd<RT,LA>& p) const
|
|
/*{\Mop returns true iff point |p| lies on the negative side of
|
|
hyperplane |\Mvar|. }*/
|
|
{ return (oriented_side(p) == ON_NEGATIVE_SIDE); }
|
|
|
|
/*{\Mtext \restoreopdims }*/
|
|
|
|
HyperplaneHd<RT,LA> transform(const Aff_transformationHd<RT,LA>& t) const
|
|
/*{\Mop returns $t(h)$.}*/
|
|
{ typename LA::Vector res =
|
|
-(LA::transpose(t.inverse().matrix()) * vector_rep());
|
|
return HyperplaneHd<RT,LA>(dimension(),res.begin(),res.end()); }
|
|
|
|
/*{\Mtext \headerline{Non-Member Functions}}*/
|
|
|
|
static Comparison_result weak_cmp(
|
|
const HyperplaneHd<RT,LA>&, const HyperplaneHd<RT,LA>&);
|
|
|
|
@ Weak equality considers two hyperplanes equal if their coefficient
|
|
vectors are multiples of each other. We define the weak linear order
|
|
as the lexicographic order under weak equality. Let $i$ be minimal
|
|
such that either $h1_i$ or $h2_i$ is non-zero. We may assume that a
|
|
non-zero value is positive (since we consider weak equality). Thus if
|
|
exactly one of the vlaue is non-zero, we can decide the order right
|
|
there: The vector with the entry zero is smaller. If both entries are
|
|
non-zero, we compute scaling factors that make the $i$-th coefficients
|
|
equal and positive and proceed.
|
|
<<implementing HyperplaneHd>>=
|
|
template <class RT, class LA>
|
|
Comparison_result HyperplaneHd<RT,LA>::
|
|
weak_cmp(const HyperplaneHd<RT,LA>& h1,
|
|
const HyperplaneHd<RT,LA>& h2)
|
|
{
|
|
CGAL_assertion_msg((h1.dimension()==h2.dimension()),
|
|
"HyperplaneHd::weak_cmp: dimensions disagree.");
|
|
if(h1.identical(h2)) return EQUAL;
|
|
|
|
int i, d = h1.dimension();
|
|
for (i = 0; i <= d &&
|
|
h1.coefficient(i) == 0 &&
|
|
h2.coefficient(i) == 0; i++); // no body
|
|
if (h1.coefficient(i) == 0) return SMALLER;
|
|
if (h2.coefficient(i) == 0) return LARGER;
|
|
|
|
int s = CGAL_NTS sign(h1.coefficient(i)) *
|
|
CGAL_NTS sign(h2.coefficient(i));
|
|
RT s1 = (RT)s * h2.coefficient(i);
|
|
RT s2 = (RT)s * h1.coefficient(i);
|
|
// |s1 * h1.coefficient(i)| is
|
|
// $\Labs{ |h1.coefficient(i)*h2.coefficient(i)| }$
|
|
|
|
Comparison_result c;
|
|
while (++i <= d) {
|
|
c = CGAL_NTS compare(s1 * h1.coefficient(i),
|
|
s2 * h2.coefficient(i));
|
|
if (c != EQUAL) return c;
|
|
}
|
|
return EQUAL;
|
|
}
|
|
|
|
<<defining HyperplaneHd>>=
|
|
static Comparison_result strong_cmp(
|
|
const HyperplaneHd<RT,LA>&, const HyperplaneHd<RT,LA>&);
|
|
@ Strong equality considers two hyperplanes equal if their coefficient
|
|
vectors are positive multiples of each other. We define the strong
|
|
linear order as the lexicographic order under strong equality. Let $i$
|
|
be minimal such that either $h1_i$ or $h2_i$ is non-zero. If the
|
|
values have different signs we can decide the order right there: The
|
|
vector with the smaller entry is smaller. If the entries have the
|
|
same sign we compute positive scaling factors that make the $i$-th
|
|
coefficients equal and proceed.
|
|
<<implementing HyperplaneHd>>=
|
|
template <class RT, class LA>
|
|
Comparison_result HyperplaneHd<RT,LA>::
|
|
strong_cmp(const HyperplaneHd<RT,LA>& h1,
|
|
const HyperplaneHd<RT,LA>& h2)
|
|
{
|
|
CGAL_assertion_msg((h1.dimension()==h2.dimension()),
|
|
"HyperplaneHd::strong_cmp: dimensions disagree.");
|
|
if (h1.identical(h2)) return EQUAL;
|
|
|
|
int i;
|
|
int d = h1.dimension();
|
|
for (i = 0; i <=d &&
|
|
h1.coefficient(i)==0 &&
|
|
h2.coefficient(i)==0; i++) ; // no body
|
|
int c1 = CGAL_NTS sign(h1.coefficient(i));
|
|
int c2 = CGAL_NTS sign(h2.coefficient(i));
|
|
if (c1 != c2) return CGAL_NTS compare(c1,c2);
|
|
RT s1 = (RT)CGAL_NTS sign(h2.coefficient(i)) * h2.coefficient(i);
|
|
RT s2 = (RT)CGAL_NTS sign(h1.coefficient(i)) * h1.coefficient(i);
|
|
|
|
Comparison_result c;
|
|
while (++i <= d) {
|
|
c = CGAL_NTS compare(s1 * h1.coefficient(i),
|
|
s2 * h2.coefficient(i));
|
|
if (c != EQUAL) return c;
|
|
}
|
|
return EQUAL;
|
|
}
|
|
|
|
<<defining HyperplaneHd>>=
|
|
|
|
bool operator==(const HyperplaneHd<RT,LA>& h2) const
|
|
{ if (identical(h2)) return true;
|
|
if (dimension()!=h2.dimension()) return false;
|
|
return HyperplaneHd<RT,LA>::strong_cmp(*this,h2) == EQUAL;
|
|
}
|
|
|
|
bool operator!=(const HyperplaneHd<RT,LA>& h2) const
|
|
{ return !operator==(h2); }
|
|
|
|
friend std::istream& operator>> <>
|
|
(std::istream&, HyperplaneHd<RT,LA>&);
|
|
friend std::ostream& operator<< <>
|
|
(std::ostream&, const HyperplaneHd<RT,LA>&);
|
|
|
|
}; // end of class HyperplaneHd
|
|
|
|
template <class RT, class LA>
|
|
bool weak_equality(const HyperplaneHd<RT,LA>& h1,
|
|
const HyperplaneHd<RT,LA>& h2)
|
|
/*{\Mfunc test for weak equality. }*/
|
|
{ if (h1.identical(h2)) return true;
|
|
if (h1.dimension()!=h2.dimension()) return false;
|
|
return HyperplaneHd<RT,LA>::weak_cmp(h1,h2) == EQUAL;
|
|
}
|
|
|
|
<<prototyping>>=
|
|
template <class RT, class LA>
|
|
std::istream& operator>>(std::istream&, HyperplaneHd<RT,LA>&);
|
|
template <class RT, class LA>
|
|
std::ostream& operator<<(std::ostream&, const HyperplaneHd<RT,LA>&);
|
|
|
|
<<implementing HyperplaneHd>>=
|
|
template <class RT, class LA>
|
|
std::istream& operator>>(std::istream& I, HyperplaneHd<RT,LA>& h)
|
|
{ h.copy_on_write(); h.ptr->read(I); return I; }
|
|
|
|
template <class RT, class LA>
|
|
std::ostream& operator<<(std::ostream& O, const HyperplaneHd<RT,LA>& h)
|
|
{ h.ptr->print(O,"HyperplaneHd"); return O; }
|
|
|
|
template <class RT, class LA>
|
|
inline CGAL::io_Operator io_tag(const HyperplaneHd<RT,LA>&)
|
|
{ return CGAL::io_Operator(); }
|
|
|
|
<<defining HyperplaneHd>>=
|
|
/*{\Mimplementation
|
|
Hyperplanes are implemented by arrays of integers as an item type.
|
|
All operations like creation, initialization, tests, vector
|
|
arithmetic, input and output on a hyperplane $h$ take time
|
|
$O(|h.dimension()|)$. coordinate access and |dimension()| take
|
|
constant time. The space requirement is $O(|h.dimension()|)$. }*/
|
|
|
|
//----------------------- end of file ----------------------------------
|
|
|
|
|
|
@ \end{document}
|