cgal/Packages/Spatial_searching/include/CGAL/Euclidean_distance_sphere_p...

121 lines
3.9 KiB
C++

// ======================================================================
//
// Copyright (c) 2002 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release : $CGAL_Revision: CGAL-2.5-I-99 $
// release_date : $CGAL_Date: 2003/05/23 $
//
// file : include/CGAL/Euclidean_distance_sphere_point.h
// package : ASPAS (3.12)
// maintainer : Hans Tangelder <hanst@cs.uu.nl>
// revision : 2.4
// revision_date : 2002/16/08
// authors : Hans Tangelder (<hanst@cs.uu.nl>)
// coordinator : Utrecht University
//
// ======================================================================
#ifndef CGAL_EUCLIDEAN_DISTANCE_SPHERE_POINT_H
#define CGAL_EUCLIDEAN_DISTANCE_SPHERE_POINT_H
#include <CGAL/Kd_tree_rectangle.h>
namespace CGAL {
template <class SearchTraits>
class Euclidean_distance_sphere_point {
public:
typedef typename SearchTraits::Point_d Point_d;
typedef typename SearchTraits::Sphere_d Sphere_d;
typedef typename SearchTraits::FT FT;
typedef typename SearchTraits::Construct_center_d Construct_center_d;
typedef typename SearchTraits::Construct_squared_radius_d Construct_squared_radius_d
typedef typename SearchTraits::Construct_cartesian_const_iterator_d Construct_cartesian_const_iterator_d;
typedef typename SearchTraits::Cartesian_const_iterator_d Cartesian_const_iterator_d;
typedef Sphere_d Query_item;
public:
// default constructor
Euclidean_distance_sphere_point() {}
inline FT transformed_distance(const Sphere_d& q, const Point_d& p) const {
Point_d c= Construct_center_d()(q);
FT distance = FT(0);
Construct_cartesian_const_iterator_d construct_it;
Cartesian_const_iterator_d cit = construct_it(c),
ce = construct_it(c,1), pit = construct_it(p);
for(; cit != ce; cit++, pit++){
distance += ((*cit)-(*pit))*((*cit)-(*pit));
}
distance += - Construct_squared_radius_d()(q);
if (distance<0) distance=FT(0);
return distance;
}
inline FT min_distance_to_rectangle(const Sphere_d& q,
const Kd_tree_rectangle<SearchTraits>& r) const {
Point_d c= Construct_center_d(q);
FT distance = FT(0);
Construct_cartesian_const_iterator_d construct_it;
Cartesian_const_iterator_d cit = construct_it(c),
ce = construct_it(c,1);
for (unsigned int i = 0; cit != ce; ++i, ++cit) {
if ((*cit) < r.min_coord(i))
distance +=
(r.min_coord(i)-(*cit))*(r.min_coord(i)-(*cit));
else if ((*cit) > r.max_coord(i))
distance +=
((*cit)-r.max_coord(i))*((*cit)-r.max_coord(i));
};
distance += - Construct_squared_radius_d()(q);
if (distance<0) distance=FT(0);
return distance;
}
inline FT max_distance_to_rectangle(const Sphere_d& q,
const Kd_tree_rectangle<SearchTraits>& r) const {
Construct_center_d construct_center_d;
Point_d c = construct_center_d(q);
FT distance=FT(0);
Construct_cartesian_const_iterator_d construct_it;
Cartesian_const_iterator_d cit = construct_it(c),
ce = construct_it(c,1);
for (unsigned int i = 0; cit != ce; ++i, ++cit) {
if ((*cit) <= (r.min_coord(i)+r.max_coord(i))/FT(2.0))
distance += (r.max_coord(i)-(*cit))*(r.max_coord(i)-(*cit));
else
distance += ((*cit)-r.min_coord(i))*((*cit)-r.min_coord(i));
};
distance += - Construct_squared_radius()(q);
if (distance<0) distance=FT(0);
return distance;
}
inline FT transformed_distance(FT d) const {
return d*d;
}
inline FT inverse_of_transformed_distance(FT d) const {
return CGAL::sqrt(d);
}
}; // class Euclidean_distance_sphere_point
} // namespace CGAL
#endif // EUCLIDEAN_DISTANCE_SPHERE_POINT_H