cgal/Homogeneous_kernel/include/CGAL/Homogeneous/PointH3.h

237 lines
6.2 KiB
C++

// Copyright (c) 1999 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Stefan Schirra
#ifndef CGAL_HOMOGENEOUS_POINT_3_H
#define CGAL_HOMOGENEOUS_POINT_3_H
#include <CGAL/Origin.h>
#include <CGAL/Fourtuple.h>
#include <CGAL/Kernel/Cartesian_coordinate_iterator_3.h>
#include <boost/utility/enable_if.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/logical.hpp>
CGAL_BEGIN_NAMESPACE
template < class R_ >
class PointH3
{
typedef typename R_::RT RT;
typedef typename R_::FT FT;
typedef typename R_::Vector_3 Vector_3;
typedef typename R_::Point_3 Point_3;
typedef typename R_::Direction_3 Direction_3;
typedef typename R_::Aff_transformation_3 Aff_transformation_3;
typedef Fourtuple<RT> Rep;
typedef typename R_::template Handle<Rep>::type Base;
typedef Rational_traits<FT> Rat_traits;
Base base;
public:
typedef Cartesian_coordinate_iterator_3<R_> Cartesian_const_iterator;
typedef R_ R;
PointH3() {}
PointH3(const Origin &)
: base (RT(0), RT(0), RT(0), RT(1)) { }
template < typename Tx, typename Ty, typename Tz >
PointH3(const Tx & x, const Ty & y, const Tz & z,
typename boost::enable_if< boost::mpl::and_< boost::mpl::and_< boost::is_convertible<Tx, RT>,
boost::is_convertible<Ty, RT> >,
boost::is_convertible<Tz, RT> > >::type* = 0)
: base(x, y, z, RT(1)) {}
PointH3(const FT& x, const FT& y, const FT& z)
: base(Rat_traits().numerator(x) * Rat_traits().denominator(y)
* Rat_traits().denominator(z),
Rat_traits().numerator(y) * Rat_traits().denominator(x)
* Rat_traits().denominator(z),
Rat_traits().numerator(z) * Rat_traits().denominator(x)
* Rat_traits().denominator(y),
Rat_traits().denominator(x) * Rat_traits().denominator(y)
* Rat_traits().denominator(z))
{
CGAL_kernel_assertion(hw() > 0);
}
PointH3(const RT& x, const RT& y, const RT& z, const RT& w)
{
if ( w < RT(0) )
base = Rep(-x,-y,-z,-w);
else
base = Rep(x,y,z,w);
}
FT x() const;
FT y() const;
FT z() const;
const RT & hx() const;
const RT & hy() const;
const RT & hz() const;
const RT & hw() const;
const RT & homogeneous(int i) const;
FT cartesian(int i) const;
FT operator[](int i) const;
Cartesian_const_iterator cartesian_begin() const
{
return Cartesian_const_iterator(static_cast<const Point_3*>(this), 0);
}
Cartesian_const_iterator cartesian_end() const
{
return Cartesian_const_iterator(static_cast<const Point_3*>(this), 3);
}
int dimension() const;
Direction_3 direction() const;
Point_3 transform( const Aff_transformation_3 & t) const;
bool operator==( const PointH3<R>& p) const;
bool operator!=( const PointH3<R>& p) const;
};
template < class R >
inline
const typename PointH3<R>::RT &
PointH3<R>::hx() const
{ return get(base).e0 ; }
template < class R >
inline
const typename PointH3<R>::RT &
PointH3<R>::hy() const
{ return get(base).e1 ; }
template < class R >
inline
const typename PointH3<R>::RT &
PointH3<R>::hz() const
{ return get(base).e2 ; }
template < class R >
inline
const typename PointH3<R>::RT &
PointH3<R>::hw() const
{ return get(base).e3 ; }
template < class R >
CGAL_KERNEL_INLINE
typename PointH3<R>::FT
PointH3<R>::x() const
{ return ( FT(hx()) / FT(hw())); }
template < class R >
CGAL_KERNEL_INLINE
typename PointH3<R>::FT
PointH3<R>::y() const
{ return ( FT(hy()) / FT(hw())); }
template < class R >
CGAL_KERNEL_INLINE
typename PointH3<R>::FT
PointH3<R>::z() const
{ return ( FT(hz()) / FT(hw())); }
template < class R >
inline
int
PointH3<R>::dimension() const
{ return 3; }
template < class R >
CGAL_KERNEL_INLINE
typename PointH3<R>::FT
PointH3<R>::cartesian(int i) const
{
CGAL_kernel_precondition(i == 0 || i == 1 || i == 2);
switch (i)
{
case 0: return x();
case 1: return y();
}
return z();
}
template < class R >
CGAL_KERNEL_INLINE
const typename PointH3<R>::RT &
PointH3<R>::homogeneous(int i) const
{
CGAL_kernel_precondition(i == 0 || i == 1 || i == 2 || i == 3);
switch (i)
{
case 0: return hx();
case 1: return hy();
case 2: return hz();
}
return hw();
}
template < class R >
inline
typename PointH3<R>::FT
PointH3<R>::operator[](int i) const
{ return cartesian(i); }
template < class R >
inline
typename PointH3<R>::Direction_3
PointH3<R>::direction() const
{ return Direction_3(*this); }
template < class R >
CGAL_KERNEL_INLINE
bool
PointH3<R>::operator==( const PointH3<R> & p) const
{
return ( (hx() * p.hw() == p.hx() * hw() )
&&(hy() * p.hw() == p.hy() * hw() )
&&(hz() * p.hw() == p.hz() * hw() ) );
}
template < class R >
inline
bool
PointH3<R>::operator!=( const PointH3<R> & p) const
{ return !(*this == p); }
template < class R >
inline
typename R::Point_3
PointH3<R>::transform(const typename PointH3<R>::Aff_transformation_3& t) const
{ return t.transform(static_cast<const Point_3&>(*this)); }
CGAL_END_NAMESPACE
#endif // CGAL_HOMOGENEOUS_POINT_3_H