cgal/Hyperbolic_triangulation_2/include/CGAL/Hyperbolic_Delaunay_triangu...

825 lines
24 KiB
C++

// Copyright (c) 2010-2016 INRIA Sophia Antipolis, INRIA Nancy (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL:
// $Id:
//
//
// Author(s) : Mikhail Bogdanov
// Monique Teillaud <Monique.Teillaud@inria.fr>
#ifndef CGAL_HYPERBOLIC_DELAUNAY_TRIANGULATION_2_H
#define CGAL_HYPERBOLIC_DELAUNAY_TRIANGULATION_2_H
#include <CGAL/Hyperbolic_triangulation_face_base_2.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <stack>
#include <set>
namespace CGAL {
template < class Gt,
class Tds = Triangulation_data_structure_2 <
Triangulation_vertex_base_2<Gt>,
Hyperbolic_triangulation_face_base_2<Gt> > >
class Hyperbolic_Delaunay_triangulation_2
: private Delaunay_triangulation_2<Gt,Tds>
{
public:
typedef Hyperbolic_Delaunay_triangulation_2<Gt, Tds> Self;
typedef Delaunay_triangulation_2<Gt,Tds> Base;
typedef typename Tds::size_type size_type;
typedef typename Tds::Vertex_handle Vertex_handle;
typedef typename Tds::Face_handle Face_handle;
typedef typename Tds::Edge Edge;
#ifndef CGAL_CFG_USING_BASE_MEMBER_BUG_2
using Base::cw;
using Base::ccw;
using Base::geom_traits;
#endif
typedef typename Tds::Edge_circulator Edge_circulator;
typedef typename Tds::Face_circulator Face_circulator;
typedef typename Tds::Vertex_circulator Vertex_circulator;
typedef typename Base::All_vertices_iterator All_vertices_iterator;
typedef typename Base::All_edges_iterator All_edges_iterator;
typedef typename Base::All_faces_iterator All_faces_iterator;
typedef typename Base::Finite_vertices_iterator Finite_vertices_iterator;
// Algebraic_kernel_for_circles_2 needs this for some reason
typedef typename Base::Line_face_circulator Line_face_circulator;
typedef Gt Geom_traits;
typedef typename Geom_traits::FT FT;
typedef typename Geom_traits::Point_2 Point;
typedef typename Geom_traits::Voronoi_point_2 Voronoi_point;
typedef typename Geom_traits::Hyperbolic_segment_2 Hyperbolic_segment;
typedef typename Geom_traits::Triangle_2 Triangle;
// Redeclaration of `Segment` that would have been inherited from DT2
typedef Hyperbolic_segment Segment;
enum Locate_type {
VERTEX = 0,
EDGE,
FACE,
OUTSIDE_CONVEX_HULL,
OUTSIDE_AFFINE_HULL
};
typedef typename Geom_traits::Side_of_oriented_hyperbolic_segment_2 Side_of_oriented_hyperbolic_segment;
typedef typename Geom_traits::Is_Delaunay_hyperbolic Is_Delaunay_hyperbolic;
Hyperbolic_Delaunay_triangulation_2(const Geom_traits& gt = Geom_traits())
: Delaunay_triangulation_2<Gt,Tds>(gt) {}
Hyperbolic_Delaunay_triangulation_2(
const Hyperbolic_Delaunay_triangulation_2<Gt,Tds> &tr)
: Delaunay_triangulation_2<Gt,Tds>(tr)
{ CGAL_triangulation_postcondition( this->is_valid() );}
template<class InputIterator>
Hyperbolic_Delaunay_triangulation_2(InputIterator first,
InputIterator last,
const Geom_traits& gt = Geom_traits()) :
Delaunay_triangulation_2<Gt,Tds>(gt) {
insert(first, last);
}
void clear() {
Base::clear();
}
void mark_star(Vertex_handle v) const
{
if(!is_star_bounded(v)) {
mark_star_faces(v);
}
}
template<class OutputItFaces>
OutputItFaces get_conflicts(const Point& p, OutputItFaces fit, Face_handle start = Face_handle()) const {
return Base::get_conflicts(p, fit, start);
}
Vertex_handle insert(const Point &p,
Face_handle start = Face_handle() )
{
Vertex_handle v = Base::insert(p, start);
mark_star(v);
return v;
}
Vertex_handle insert(const Point& p,
typename Base::Locate_type lt,
Face_handle loc, int li )
{
Vertex_handle v = Base::insert(p, lt, loc, li);
mark_star(v);
return v;
}
#ifndef CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
template < class InputIterator >
std::ptrdiff_t
insert( InputIterator first, InputIterator last,
typename boost::enable_if<
boost::is_base_of<
Point,
typename std::iterator_traits<InputIterator>::value_type
>
>::type* = NULL
)
#else
template < class InputIterator >
std::ptrdiff_t
insert(InputIterator first, InputIterator last)
#endif //CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
{
size_type n = Base::insert(first, last);
mark_finite_non_hyperbolic_faces();
return n;
}
bool is_infinite(Vertex_handle v) const
{
return Base::is_infinite(v);
}
bool is_Delaunay_hyperbolic(Face_handle f) const
{
return !has_infinite_vertex(f) && !is_finite_non_hyperbolic(f);
}
bool is_Delaunay_hyperbolic(Face_handle f, int i) const
{
return !has_infinite_vertex(f, i) && !is_finite_non_hyperbolic(f, i);
}
bool is_Delaunay_hyperbolic(const Edge& e) const
{
return is_Delaunay_hyperbolic(e.first, e.second);
}
bool is_Delaunay_hyperbolic(const Edge_circulator& ec) const
{
return is_Delaunay_hyperbolic(*ec);
}
bool is_Delaunay_hyperbolic(const All_edges_iterator& ei) const
{
return is_Delaunay_hyperbolic(*ei);
}
// is_infinite functions are kept in order to reuse Triangulation_2 demo :
// apply_to_range is called by Qt/TriangulationGraphicsItem.h
// TODO: document that is_infinite functions are not inherited from Triangulation_2
bool is_infinite(Face_handle f) const { return !is_Delaunay_hyperbolic(f); }
bool is_infinite(Face_handle f, int i) const { return !is_Delaunay_hyperbolic(f,i); }
bool is_infinite(const Edge e) const { return !is_Delaunay_hyperbolic(e); }
bool is_infinite(const Edge_circulator& ec) const { return !is_Delaunay_hyperbolic(ec); }
bool is_infinite(const All_edges_iterator& ei) const { return !is_Delaunay_hyperbolic(ei); }
private:
Oriented_side side_of_hyperbolic_triangle(const Point p, const Point q, const Point r,
const Point query, Locate_type &lt, int& li) const {
// The triangle (p,q,r) must be Delaunay hyperbolic
CGAL_triangulation_precondition(Is_Delaunay_hyperbolic()(p, q, r));
// Point p is assumed to be at index 0, q at index 1 and r at index 2 in the face.
li = -1;
if (query == p) {
lt = VERTEX;
li = 0;
return ON_ORIENTED_BOUNDARY;
}
if (query == q) {
lt == VERTEX;
li = 1;
return ON_ORIENTED_BOUNDARY;
}
if (query == r) {
lt == VERTEX;
li = 2;
return ON_ORIENTED_BOUNDARY;
}
Oriented_side cp1 = Side_of_oriented_hyperbolic_segment()(p, q, query);
if (cp1 == ON_ORIENTED_BOUNDARY) {
lt = EDGE;
li = 2;
return ON_ORIENTED_BOUNDARY;
}
Oriented_side cp2 = Side_of_oriented_hyperbolic_segment()(q, r, query);
if (cp2 == ON_ORIENTED_BOUNDARY) {
lt = EDGE;
li = 0;
return ON_ORIENTED_BOUNDARY;
}
Oriented_side cp3 = Side_of_oriented_hyperbolic_segment()(r, p, query);
if (cp3 == ON_ORIENTED_BOUNDARY) {
lt = EDGE;
li = 1;
return ON_ORIENTED_BOUNDARY;
}
Oriented_side cs1 = Side_of_oriented_hyperbolic_segment()(p, q, r);
Oriented_side cs2 = Side_of_oriented_hyperbolic_segment()(q, r, p);
Oriented_side cs3 = Side_of_oriented_hyperbolic_segment()(r, p, q);
// Cannot be on the boundary here.
lt = FACE;
if (cs1 != cp1 || cs2 != cp2 || cs3 != cp3) {
return ON_NEGATIVE_SIDE;
} else {
return ON_POSITIVE_SIDE;
}
}
bool has_infinite_vertex(Face_handle f) const
{
return Base::is_infinite(f);
}
bool has_infinite_vertex(Face_handle f, int i) const
{
return Base::is_infinite(f, i);
}
bool has_infinite_vertex(const Edge& e) const
{
return Base::is_infinite(e);
}
int get_finite_non_hyperbolic_edge(Face_handle f) const
{
assert(is_finite_non_hyperbolic(f));
return f->get_non_hyperbolic_edge();
}
bool is_finite_non_hyperbolic(Face_handle f) const
{
return f->is_finite_non_hyperbolic();
}
bool is_finite_non_hyperbolic(Face_handle f, int i) const
{
if(this->dimension() <= 1) {
return false;
}
if(is_finite_non_hyperbolic(f) && get_finite_non_hyperbolic_edge(f) == i) {
return true;
}
// another incident face and corresponding index
Face_handle f2 = f->neighbor(i);
int i2 = f2->index(f);
if(is_finite_non_hyperbolic(f2) && get_finite_non_hyperbolic_edge(f2) == i2) {
return true;
}
return false;
}
bool is_finite_non_hyperbolic(const Edge& e) const
{
return is_finite_non_hyperbolic(e.first, e.second);
}
// Depth-first search (dfs) and marking the finite non_hyperbolic faces.
void mark_finite_non_hyperbolic_faces() const
{
if(this->dimension() <= 1) return;
std::set<Face_handle> visited_faces;
// maintain a stack to be able to backtrack
// to the most recent faces which neighbors are not visited
std::stack<Face_handle> backtrack;
// start from a face with infinite vertex
Face_handle current = Base::infinite_face();
// mark it as visited
visited_faces.insert(current);
// put the element whose neighbors we are going to explore.
backtrack.push(current);
// test whether a face is finite non_hyperbolic or not
Mark_face test(*this);
Face_handle next;
while(!backtrack.empty()) {
// take a face
current = backtrack.top();
// start visiting the neighbors
int i = 0;
for(; i < 3; i++) {
next = current->neighbor(i);
// if a neighbor is already visited, then stop going deeper
if(visited_faces.find(next) != visited_faces.end()) {
continue;
}
visited_faces.insert(next);
mark_face(next, test);
// go deeper if the neighbor is non_hyperbolic
if(!is_Delaunay_hyperbolic(next)) {
backtrack.push(next);
break;
}
}
// if all the neighbors are already visited, then remove "current" face.
if(i == 3) {
backtrack.pop();
}
}
}
// check if a star is bounded by finite faces
// TODO: rename this function name
bool is_star_bounded(Vertex_handle v) const
{
if(this->dimension() <= 1) {
return true;
}
Face_handle f = v->face();
Face_handle next;
int i;
Face_handle start(f);
Face_handle opposite_face;
do {
i = f->index(v);
next = f->neighbor(ccw(i)); // turn ccw around v
opposite_face = f->neighbor(i);
if(!this->is_Delaunay_hyperbolic(opposite_face)) {
return false;
}
f = next;
} while(next != start);
return true;
}
//use the function: insert_and_give_new_faces?
void mark_star_faces(Vertex_handle v) const
{
// TODO: think of it
if(this->dimension() <= 1) return;
Mark_face test(*this);
Face_handle f = v->face();
Face_handle start(f), next;
int i;
do {
i = f->index(v);
next = f->neighbor(ccw(i)); // turn ccw around v
mark_face(f, test);
f = next;
} while(next != start);
return;
}
template<class Mark_face_test>
void mark_face(const Face_handle& f, const Mark_face_test& test) const
{
f->set_finite_non_hyperbolic(test(f));
}
void mark_face(const Face_handle& f) const
{
Mark_face test(*this);
mark_face(f, test);
}
class Mark_face
{
public:
Mark_face(const Self& tr) :
_tr(tr)
{}
bool operator ()(const Face_handle& f) const
{
typedef typename Gt::Is_Delaunay_hyperbolic Is_Delaunay_hyperbolic;
if(_tr.has_infinite_vertex(f)) {
return false;
}
Point p0 = f->vertex(0)->point();
Point p1 = f->vertex(1)->point();
Point p2 = f->vertex(2)->point();
int ind = 0;
Is_Delaunay_hyperbolic is_Delaunay_hyperbolic = _tr.geom_traits().is_Delaunay_hyperbolic_object();
if(is_Delaunay_hyperbolic(p0, p1, p2, ind) == false) {
f->set_finite_non_hyperbolic(true); // MT should not be necessary, return true should be enough (?)
f->set_non_hyperbolic_edge(ind);
return true;
}
// the face is finite and hyperbolic
return false;
}
private:
Mark_face(const Mark_face&);
Mark_face& operator= (const Mark_face&);
const Self& _tr;
};
public:
// This class is used to generate the Finite_*_iterators.
class Non_hyperbolic_tester
{
const Self *t;
public:
Non_hyperbolic_tester() {}
Non_hyperbolic_tester(const Self *tr) : t(tr) {}
bool operator()(const All_vertices_iterator & vit) const {
return t->is_infinite(vit);
}
bool operator()(const All_faces_iterator & fit) const {
return !t->is_Delaunay_hyperbolic(fit);
}
bool operator()(const All_edges_iterator & eit ) const {
return !t->is_Delaunay_hyperbolic(eit);
}
};
Non_hyperbolic_tester
non_hyperbolic_tester() const
{
return Non_hyperbolic_tester(this);
}
class Hyperbolic_faces_iterator
: public Filter_iterator<All_faces_iterator, Non_hyperbolic_tester>
{
typedef Filter_iterator<All_faces_iterator, Non_hyperbolic_tester> Base;
typedef Hyperbolic_faces_iterator Self;
public:
Hyperbolic_faces_iterator() : Base() {}
Hyperbolic_faces_iterator(const Base &b) : Base(b) {}
Self & operator++() { Base::operator++(); return *this; }
Self & operator--() { Base::operator--(); return *this; }
Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
operator const Face_handle() const { return Base::base(); }
};
Hyperbolic_faces_iterator
hyperbolic_faces_begin() const
{
if ( this->dimension() < 2 )
return hyperbolic_faces_end();
return CGAL::filter_iterator(this->all_faces_end(),
Non_hyperbolic_tester(this),
this->all_faces_begin() );
}
Hyperbolic_faces_iterator
hyperbolic_faces_end() const
{
return CGAL::filter_iterator(this->all_faces_end(),
Non_hyperbolic_tester(this) );
}
typedef Filter_iterator<All_edges_iterator, Non_hyperbolic_tester> Hyperbolic_edges_iterator;
Hyperbolic_edges_iterator
hyperbolic_edges_begin() const
{
if ( this->dimension() < 1 )
return hyperbolic_edges_end();
return CGAL::filter_iterator(this->all_edges_end(),
Non_hyperbolic_tester(this),
this->all_edges_begin());
}
Hyperbolic_edges_iterator
hyperbolic_edges_end() const
{
return CGAL::filter_iterator(this->all_edges_end(),
Non_hyperbolic_tester(this) );
}
Line_face_circulator line_walk(const Point& p, const Point& q, Face_handle f = Face_handle()) const {
return Base::line_walk(p, q, f);
}
Triangle triangle(Face_handle f) const {
return Base::triangle(f);
}
Segment segment(Face_handle f, int i) const {
return typename Geom_traits::Construct_hyperbolic_segment_2()(f->vertex(cw(i))->point(), f->vertex(ccw(i))->point());
}
Segment segment (const Edge& e) const {
Face_handle f = e.first;
int i = e.second;
return segment(f, i);
}
Segment segment(const Edge_circulator& e) const {
return segment(*e);
}
size_type number_of_vertices() const {
return Base::number_of_vertices();
}
Vertex_circulator incident_vertices(Vertex_handle v) const {
return Base::incident_vertices(v);
}
size_type number_of_hyperbolic_faces() const
{
return std::distance(hyperbolic_faces_begin(), hyperbolic_faces_end());
}
size_type number_of_hyperbolic_edges() const
{
return std::distance(hyperbolic_edges_begin(), hyperbolic_edges_end());
}
int dimension() const {
return Base::dimension();
}
// Finite faces/edges iterators kept for the demo in order to reuse Triangulation_2 demo (see above)
// TODO: document that they are not inherited from Triangulation_2
typedef Hyperbolic_faces_iterator Finite_faces_iterator;
Finite_faces_iterator finite_faces_begin() const { return hyperbolic_faces_begin(); }
Finite_faces_iterator finite_faces_end() const { return hyperbolic_faces_end(); }
typedef Hyperbolic_edges_iterator Finite_edges_iterator;
Finite_edges_iterator finite_edges_begin() const { return hyperbolic_edges_begin(); }
Finite_edges_iterator finite_edges_end() const { return hyperbolic_edges_end(); }
Finite_vertices_iterator finite_vertices_begin() const { return Base::finite_vertices_begin(); }
Finite_vertices_iterator finite_vertices_end() const { return Base::finite_vertices_end(); }
Voronoi_point
dual(Face_handle f) const
{
CGAL_triangulation_precondition (this->is_Delaunay_hyperbolic(f));
return this->geom_traits().construct_hyperbolic_circumcenter_2_object()
( f->vertex(0)->point(), f->vertex(1)->point(), f->vertex(2)->point());
}
Hyperbolic_segment
dual(const Edge& e) const
{
return dual(e.first, e.second);
}
Hyperbolic_segment
dual(Face_handle f, int i) const
{
CGAL_triangulation_precondition (this->is_Delaunay_hyperbolic(f,i));
if(this->dimension() == 1) {
Point p = f->vertex(cw(i))->point();
Point q = f->vertex(ccw(i))->point();
// hyperbolic line
Hyperbolic_segment line = this->geom_traits().construct_hyperbolic_bisector_2_object()(p,q);
return line;
}
Face_handle n = f->neighbor(i);
int in = n->index(f);
//TODO MT store values of bools to avoid recomputing is-hyperbolic several times
// boths faces are non_hyperbolic, but the incident edge is hyperbolic
if( !is_Delaunay_hyperbolic(f) && !is_Delaunay_hyperbolic(n) ){
const Point& p = f->vertex(ccw(i))->point();
const Point& q = f->vertex(cw(i))->point();
// hyperbolic line
Hyperbolic_segment line =
this->geom_traits().construct_hyperbolic_bisector_2_object()(p,q);
return line;
}
// both faces are hyperbolic
if( is_Delaunay_hyperbolic(f) && is_Delaunay_hyperbolic(n) ) {
const Point& p = f->vertex(ccw(i))->point();
const Point& q = f->vertex(cw(i))->point();
Hyperbolic_segment s =
this->geom_traits().construct_hyperbolic_bisector_2_object()
(p,q,f->vertex(i)->point(),n->vertex(in)->point());
//TODO MT cut edge at dual points !!!!
return s;
}
// one of the incident faces is non_hyperbolic
Face_handle hyp_face = f;
if(!is_Delaunay_hyperbolic(f)) {
hyp_face = n;
i = in;
}
const Point& p = hyp_face->vertex(ccw(i))->point();
const Point& q = hyp_face->vertex(cw(i))->point();
// ToDo: Line or Segment?
// hyperbolic line and ray
Hyperbolic_segment ray = this->geom_traits().construct_hyperbolic_bisector_2_object()(p,q,hyp_face->vertex(i)->point());
// TODO MT cut edge at dual point !!!
// Segment ray = this->geom_traits().construct_ray_2_object()(dual(finite_face), line);
return ray;
}
public:
Face_handle locate(const Point& p, const Face_handle hint = Face_handle()) const {
Locate_type lt;
int li;
return locate(p, lt, li, hint);
}
Face_handle locate(const Point& query, Locate_type& lt, int &li, Face_handle hint = Face_handle()) const {
// Perform an Euclidean location first and get close to the hyperbolic face containing the query point
typename Base::Locate_type blt;
Face_handle fh = Base::locate(query, blt, li, hint);
if (blt == Base::VERTEX) {
lt = VERTEX;
} else {
if (blt == Base::EDGE) {
lt = EDGE;
} else {
if (blt == Base::FACE) {
lt = FACE;
} else {
if (blt == OUTSIDE_CONVEX_HULL) {
lt = OUTSIDE_CONVEX_HULL;
} else {
lt = OUTSIDE_AFFINE_HULL;
}
}
}
}
if (lt == VERTEX) {
return fh;
}
if (lt == OUTSIDE_CONVEX_HULL ||
lt == OUTSIDE_AFFINE_HULL) {
return Face_handle();
}
// This case corresponds to when the point is located on an Euclidean edge.
if (lt == EDGE) {
Point p = fh->vertex(0)->point();
Point q = fh->vertex(1)->point();
Point r = fh->vertex(2)->point();
if (Is_Delaunay_hyperbolic()(p, q, r)) {
Oriented_side side = side_of_hyperbolic_triangle(p, q, r, query, lt, li);
if (side == ON_ORIENTED_BOUNDARY) {
lt = EDGE;
return fh;
} else {
if (side == ON_POSITIVE_SIDE) {
lt = FACE;
return fh;
} else {
// do nothing -- we still have to check the neighboring face
}
}
}
p = fh->vertex(ccw(li))->point();
q = fh->mirror_vertex(li)->point();
r = fh->vertex(cw(li))->point();
if (Is_Delaunay_hyperbolic()(p, q, r)) {
Oriented_side side = side_of_hyperbolic_triangle(p, q, r, query, lt, li);
if (side == ON_ORIENTED_BOUNDARY) {
lt = EDGE;
return fh;
} else {
if (side == ON_POSITIVE_SIDE) {
lt = FACE;
return fh;
} else {
// There is nothing to be done now -- the point is outside the convex hull of the triangulation
lt = OUTSIDE_CONVEX_HULL;
return Face_handle();
}
}
}
}
// Here, the face has been located in the Euclidean face lh
Point p = fh->vertex(0)->point();
Point q = fh->vertex(1)->point();
Point r = fh->vertex(2)->point();
if (!Is_Delaunay_hyperbolic()(p, q, r)) {
lt = OUTSIDE_CONVEX_HULL;
return Face_handle();
}
Oriented_side side = side_of_hyperbolic_triangle(p, q, r, query, lt, li);
if (side == ON_POSITIVE_SIDE) {
lt = FACE;
return fh;
} else {
if (side == ON_ORIENTED_BOUNDARY) {
lt = EDGE;
return fh;
} else {
// Here, the point lies in a face that is a neighbor to fh
for (int i = 0; i < 3; i++) {
Face_handle nfh = fh->neighbor(i);
if (Is_Delaunay_hyperbolic()(nfh->vertex(0)->point(),nfh->vertex(1)->point(),nfh->vertex(2)->point())) {
Oriented_side nside = side_of_hyperbolic_triangle(nfh->vertex(0)->point(),nfh->vertex(1)->point(),nfh->vertex(2)->point(), query, lt, li);
if (nside == ON_POSITIVE_SIDE) {
lt = FACE;
return nfh;
} else if (nside == ON_ORIENTED_BOUNDARY) {
lt = EDGE;
return nfh;
}
}
}
// At this point, the point lies outside of the convex hull of the triangulation,
// since it has not been found in any of the hyperbolic faces adjacent to fh.
lt = OUTSIDE_CONVEX_HULL;
return Face_handle();
}
}
// We never reach this point, but we have to make the compiler happy
lt = OUTSIDE_CONVEX_HULL;
return Face_handle();
}
};
} //namespace CGAL
#endif // CGAL_HYPERBOLIC_DELAUNAY_TRIANGULATION_2_H