cgal/Kernel_d/include/CGAL/Kernel_d/Aff_transformationCd.h

207 lines
5.9 KiB
C++

// Copyright (c) 2000,2001
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Michael Seel
#ifndef CGAL_AFF_TRANSFORMATIONCD_H
#define CGAL_AFF_TRANSFORMATIONCD_H
#include <CGAL/basic.h>
#include <CGAL/aff_transformation_tags.h>
#include <CGAL/Handle_for.h>
#include <CGAL/rational_rotation.h>
namespace CGAL {
template <class FT, class LA > class Aff_transformationCd;
template <class FT, class LA > class Aff_transformationCd_rep;
template <class FT, class LA>
class Aff_transformationCd_rep
{
friend class Aff_transformationCd<FT,LA>;
typedef typename LA::Matrix Matrix;
Matrix M_;
public:
Aff_transformationCd_rep(int d) : M_(d+1) {}
Aff_transformationCd_rep(const Matrix& M_init) : M_(M_init) {}
~Aff_transformationCd_rep() {}
};
template <class _FT, class _LA>
class Aff_transformationCd :
public Handle_for< Aff_transformationCd_rep<_FT,_LA> > {
typedef Aff_transformationCd_rep<_FT,_LA> Rep;
typedef Handle_for<Rep> Base;
typedef Aff_transformationCd<_FT,_LA> Self;
using Base::ptr;
public:
typedef _FT RT;
typedef _FT FT;
typedef _LA LA;
typedef typename _LA::Matrix Matrix;
typedef typename _LA::Vector Vector;
Aff_transformationCd(int d = 0) : Base( Rep(d) ) {}
Aff_transformationCd(int d, Identity_transformation) : Base( Rep(d) )
{ for (int i = 0; i <= d; ++i) ptr()->M_(i,i) = FT(1); }
Aff_transformationCd(const Matrix& M) : Base( Rep(M) )
{ CGAL_assertion_msg((M.row_dimension()==M.column_dimension()),
"Aff_transformationCd:: initialization matrix not quadratic.");
int d = M.row_dimension(),i;
for (i=0; i<d-1; ++i) CGAL_assertion(M(d-1,i)==FT(0));
CGAL_assertion(M(d-1,d-1)==FT(1));
}
template <typename Forward_iterator>
Aff_transformationCd(Scaling, Forward_iterator start, Forward_iterator end) :
Base( Rep(static_cast<int>(std::distance(start,end))-1) )
/*{\Mcreate introduces the transformation of $d$-space specified by a
diagonal matrix with entries |set [start,end)| on the diagonal
(a scaling of the space). \precond |set [start,end)| is a vector of
dimension $d+1$.}*/
{ int i=0; while (start != end) { ptr()->M_(i,i) = *start++;++i; } }
Aff_transformationCd(Translation, const VectorCd<RT,LA>& v) :
Base( Rep(v.dimension()) )
{ int d = v.dimension();
for (int i = 0; i < d; ++i) {
ptr()->M_(i,i) = FT(1);
ptr()->M_(i,d) = v.cartesian(i);
}
ptr()->M_(d,d) = FT(1);
}
Aff_transformationCd(int d, Scaling, const RT& num, const RT& den)
: Base( Rep(d) )
{ Matrix& M = ptr()->M_;
for (int i = 0; i < d; ++i) M(i,i) = num/den;
M(d,d) = FT(1);
}
Aff_transformationCd(int d, Rotation,
const RT& sin_num, const RT& cos_num, const RT& den,
int e1 = 0, int e2 = 1) : Base( Rep(d) )
{
CGAL_assertion_msg((sin_num*sin_num + cos_num*cos_num == den*den),
"planar_rotation: rotation parameters disobey precondition.");
CGAL_assertion_msg((0<=e1 && e1<=e2 && e2<d),
"planar_rotation: base vector indices wrong.");
Matrix& M = ptr()->M_;
for (int i=0; i<d; i++) M(i,i) = 1;
M(e1,e1) = cos_num/den; M(e1,e2) = -sin_num/den;
M(e2,e1) = sin_num/den; M(e2,e2) = cos_num/den;
M(d,d) = FT(1);
}
Aff_transformationCd(int d, Rotation, const DirectionCd<RT,LA>& dir,
const RT& eps_num, const RT& eps_den, int e1 = 0, int e2 = 1)
: Base( Rep(d) )
{
CGAL_assertion(dir.dimension()==2);
Matrix& M = ptr()->M_;
for (int i=0; i<d; i++) M(i,i) = FT(1);
RT sin_num, cos_num, denom;
rational_rotation_approximation(dir.dx(), dir.dy(),
sin_num, cos_num, denom,
eps_num, eps_den);
M(e1,e1) = cos_num/denom; M(e1,e2) = -sin_num/denom;
M(e2,e1) = sin_num/denom; M(e2,e2) = cos_num/denom;
M(d,d) = FT(1);
}
int dimension() const
{ return ptr()->M_.row_dimension()-1; }
const Matrix& matrix() const { return ptr()->M_; }
bool is_odd() const
{ return LA::sign_of_determinant(matrix())<0; }
Vector operator()(const Vector& v) const
{ CGAL_assertion(matrix().row_dimension()-1==v.dimension());
const Matrix& M = ptr()->M_;
int i,j,d(v.dimension());
Vector res(d);
for (i=0; i<d; ++i) { // all rows
FT cres(0);
for (j=0; j<d; ++j) cres+=M(i,j)*v[j]; // per row
cres += M(i,d);
res[i]=cres;
}
return res;
}
Vector transform_linearly(const Vector& v) const
{ CGAL_assertion(matrix().row_dimension()-1==v.dimension());
const Matrix& M = ptr()->M_;
int i,j,d(v.dimension());
Vector res(d);
for (i=0; i<d; ++i) { // all rows
FT cres(0);
for (j=0; j<d; ++j) cres+=M(i,j)*v[j]; // per row
res[i]=cres;
}
return res;
}
Aff_transformationCd<RT,LA> inverse() const
{ Aff_transformationCd<RT,LA> Inv; RT D;
Vector dummy;
if ( !LA::inverse(matrix(),Inv.ptr()->M_,D,dummy) )
CGAL_error_msg("Aff_transformationCd::inverse: not invertible.");
if ( D < FT(0) ) Inv.ptr()->M_ = -Inv.ptr()->M_;
return Inv;
}
Aff_transformationCd<RT,LA>
operator*(const Aff_transformationCd<RT,LA>& s) const
{ CGAL_assertion_msg((dimension()==s.dimension()),
"Aff_transformationCd::operator*: dimensions disagree.");
return Aff_transformationCd<RT,LA>(matrix()*s.matrix());
}
bool operator==(const Aff_transformationCd<RT,LA>& a1) const
{ if ( this->identical(a1) ) return true;
return ( matrix() == a1.matrix() );
}
bool operator!=(const Aff_transformationCd<RT,LA>& a1) const
{ return !operator==(a1); }
}; // Aff_transformationCd
template <class FT, class LA>
std::ostream& operator<<(
std::ostream& os, const Aff_transformationCd<FT,LA>& t)
{ os << t.matrix(); return os; }
template <class FT, class LA>
std::istream& operator>>(
std::istream& is, Aff_transformationCd<FT,LA>& t)
{ typename LA::Matrix M(t.dimension());
is >> M; t = Aff_transformationCd<FT,LA>(M);
return is;
}
} //namespace CGAL
#endif // CGAL_AFF_TRANSFORMATIONCD_H