cgal/Algebraic_foundations/doc_tex/Algebraic_foundations_ref/RealEmbeddable.tex

62 lines
2.2 KiB
TeX

\begin{ccRefConcept}{RealEmbeddable}
\ccDefinition
A model of this concepts represents numbers that are embeddable on the real
axis. The type obeys the algebraic structure and compares two values according
to the total order of the real numbers.
Moreover, \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >} is a model of
\ccc{RealEmbeddableTraits}\\
with:\\
- \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::Is_real_embeddable} set to \ccc{Tag_true} \\
and functors :\\
- \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::Is_zero} \\
- \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::Abs} \\
- \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::Sgn} \\
- \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::Is_positive} \\
- \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::Is_negative} \\
- \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::Compare} \\
- \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::To_double} \\
- \ccc{CGAL::Real_embeddable_traits< RealEmbeddable >::To_interval} \\
Remark:\\
If a number type is a model of both \ccc{IntegralDomainWithoutDivision} and
\ccc{RealComparable}, it follows that the ring represented by such a number type
is a sub-ring of the real numbers and hence has characteristic zero.
%( see http://mathworld.wolfram.com/CharacteristicField.html ).
\ccRefines
\ccc{Equality Comparable}\\
\ccc{LessThanComparable}
\ccOperations
\ccFunction{bool operator==(const RealEmbeddable &a,
const RealEmbeddable &b);}{}
\ccGlue
\ccFunction{bool operator!=(const RealEmbeddable &a,
const RealEmbeddable &b);}{}
\ccFunction{bool operator< (const RealEmbeddable &a,
const RealEmbeddable &b);}{}
\ccGlue
\ccFunction{bool operator<=(const RealEmbeddable &a,
const RealEmbeddable &b);}{}
\ccGlue
\ccFunction{bool operator> (const RealEmbeddable &a,
const RealEmbeddable &b);}{}
\ccGlue
\ccFunction{bool operator>=(const RealEmbeddable &a,
const RealEmbeddable &b);}{}
\ccGlue
\ccSeeAlso
\ccRefIdfierPage{RealEmbeddableTraits}\\
%\ccHasModels
\end{ccRefConcept}