cgal/Packages/Nef_S2/include/CGAL/Nef_polyhedron_S2.h

682 lines
24 KiB
C++

// ============================================================================
//
// Copyright (c) 1997-2000 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------------
//
// release : $CGAL_Revision$
// release_date : $CGAL_Date$
//
// file : include/CGAL/Nef_polyhedron_S2.h
// package : Nef_S2
// chapter : Nef Polyhedra
//
// revision : $Revision$
// revision_date : $Date$
//
// author(s) : Michael Seel <seel@mpi-sb.mpg.de>
// maintainer : Michael Seel <seel@mpi-sb.mpg.de>
// coordinator : Michael Seel <seel@mpi-sb.mpg.de>
//
// implementation: Nef polyhedra in the sphere surface
// ============================================================================
#ifndef CGAL_NEF_POLYHEDRON_S2_H
#define CGAL_NEF_POLYHEDRON_S2_H
#include <CGAL/basic.h>
#include <CGAL/Handle_for.h>
#include <CGAL/Random.h>
#include <CGAL/Nef_S2/Sphere_map.h>
#include <CGAL/Nef_S2/SM_decorator.h>
#include <CGAL/Nef_S2/SM_io_parser.h>
#include <CGAL/Nef_S2/SM_point_locator.h>
#include <CGAL/Nef_S2/SM_overlayer.h>
#include <vector>
#include <list>
#undef _DEBUG
#define _DEBUG 121
#include <CGAL/Nef_S2/debug.h>
CGAL_BEGIN_NAMESPACE
template <typename K> class Nef_polyhedron_S2;
template <typename K> class Nef_polyhedron_S2_rep;
template <typename K>
std::ostream& operator<<(std::ostream&, const Nef_polyhedron_S2<K>&);
template <typename K>
std::istream& operator>>(std::istream&, Nef_polyhedron_S2<K>&);
template <typename K>
class Nef_polyhedron_S2_rep
{ typedef Nef_polyhedron_S2_rep<K> Self;
friend class Nef_polyhedron_S2<K>;
typedef K Kernel;
typedef CGAL::Sphere_geometry<Kernel> Sphere_kernel;
typedef CGAL::Sphere_map<Sphere_kernel> Sphere_map;
typedef CGAL::SM_const_decorator<Sphere_map,Sphere_kernel>
Const_decorator;
typedef CGAL::SM_decorator<Sphere_map,Sphere_kernel> Decorator;
typedef CGAL::SM_overlayer<Decorator> Overlayer;
typedef CGAL::SM_point_locator<Decorator> Locator;
Sphere_map sm_;
public:
Nef_polyhedron_S2_rep() : sm_() {}
Nef_polyhedron_S2_rep(const Self& R) : sm_() {}
~Nef_polyhedron_S2_rep() { sm_.clear(); }
};
/*{\Moptions print_title=yes }*/
/*{\Manpage {Nef_polyhedron_S2}{K}
{Nef Polyhedra in the sphere surface}{N}}*/
/*{\Mdefinition An instance of data type |\Mname| is a subset of $S_2$
that is the result of forming complements and intersections starting
from a finite set |H| of half-spaces. |\Mtype| is closed under all
binary set operations |intersection|, |union|, |difference|,
|complement| and under the topological operations |boundary|,
|closure|, and |interior|.
The template parameter |Kernel| is specified via a kernel concept.
|Kernel| must be a model of the concept |NefSphereKernelTraits_2|.
}*/
template <typename K>
class Nef_polyhedron_S2 : public Handle_for< Nef_polyhedron_S2_rep<K> >
{
public:
typedef K Kernel;
/*{\Mtypes 7}*/
typedef Nef_polyhedron_S2<K> Self;
typedef Nef_polyhedron_S2_rep<K> Rep;
typedef Handle_for< Nef_polyhedron_S2_rep<K> > Base;
typedef typename Rep::Sphere_kernel Sphere_kernel;
typedef typename Rep::Sphere_map Sphere_map;
typedef typename Sphere_kernel::Sphere_point Sphere_point;
/*{\Mtypemember points in the sphere surface.}*/
typedef typename Sphere_kernel::Sphere_segment Sphere_segment;
/*{\Mtypemember segments in the sphere surface.}*/
typedef typename Sphere_kernel::Sphere_circle Sphere_circle;
/*{\Mtypemember oriented great circles modeling spherical half-spaces}*/
typedef typename Sphere_kernel::Sphere_direction Sphere_direction;
typedef typename Sphere_map::Mark Mark;
/*{\Xtypemember marking set membership or exclusion.}*/
enum Boundary { EXCLUDED=0, INCLUDED=1 };
/*{\Menum construction selection.}*/
enum Content { EMPTY=0, COMPLETE=1 };
/*{\Menum construction selection}*/
const Sphere_map& sphere_map() const { return ptr()->sm_; }
protected:
Sphere_map& sphere_map() { return ptr()->sm_; }
struct AND { bool operator()(bool b1, bool b2) const { return b1&&b2; } };
struct OR { bool operator()(bool b1, bool b2) const { return b1||b2; } };
struct DIFF { bool operator()(bool b1, bool b2) const { return b1&&!b2; } };
struct XOR { bool operator()(bool b1, bool b2) const
{ return (b1&&!b2)||(!b1&&b2); } };
typedef Nef_polyhedron_S2_rep<K> Nef_rep;
typedef typename Nef_rep::Decorator Decorator;
typedef typename Nef_rep::Const_decorator Const_decorator;
typedef typename Nef_rep::Overlayer Overlayer;
typedef typename Nef_rep::Locator Locator;
friend std::ostream& operator<< CGAL_NULL_TMPL_ARGS
(std::ostream& os, const Nef_polyhedron_S2<K>& NP);
friend std::istream& operator>> CGAL_NULL_TMPL_ARGS
(std::istream& is, Nef_polyhedron_S2<K>& NP);
typedef typename Decorator::Vertex_handle Vertex_handle;
typedef typename Decorator::Halfedge_handle Halfedge_handle;
typedef typename Decorator::Halfloop_handle Halfloop_handle;
typedef typename Decorator::Face_handle Face_handle;
typedef typename Decorator::Vertex_const_handle Vertex_const_handle;
typedef typename Decorator::Halfedge_const_handle Halfedge_const_handle;
typedef typename Decorator::Halfloop_const_handle Halfloop_const_handle;
typedef typename Decorator::Face_const_handle Face_const_handle;
typedef typename Decorator::Vertex_iterator Vertex_iterator;
typedef typename Decorator::Halfedge_iterator Halfedge_iterator;
typedef typename Decorator::Halfloop_iterator Halfloop_iterator;
typedef typename Decorator::Face_iterator Face_iterator;
typedef typename Const_decorator::Vertex_const_iterator
Vertex_const_iterator;
typedef typename Const_decorator::Halfedge_const_iterator
Halfedge_const_iterator;
typedef typename Const_decorator::Halfloop_const_iterator
Halfloop_const_iterator;
typedef typename Const_decorator::Face_const_iterator
Face_const_iterator;
typedef std::list<Sphere_segment> SS_list;
typedef typename SS_list::const_iterator SS_iterator;
public:
/*{\Mcreation 3}*/
Nef_polyhedron_S2(Content sphere = EMPTY) : Base(Nef_rep())
/*{\Mcreate creates an instance |\Mvar| of type |\Mname|
and initializes it to the empty set if |sphere == EMPTY|
and to the whole sphere if |sphere == COMPLETE|.}*/
{
SS_list L;
Decorator D(sphere_map());
D.mark_of_halfsphere(-1) = D.mark_of_halfsphere(+1) = bool(sphere);
}
Nef_polyhedron_S2(const Sphere_circle& c,
Boundary circle = INCLUDED) : Base(Nef_rep())
/*{\Mcreate creates a Nef polyhedron |\Mvar| containing the half-sphere
left of |c| including |c| if |circle==INCLUDED|, excluding |c| if
|circle==EXCLUDED|.}*/
{ TRACEN("Nef_polyhedron_S2(): construction from circle "<<c);
Overlayer D(sphere_map()); D.create(c);
Halfloop_handle h = D.halfloop();
if ( D.circle(h) != c ) h = D.twin(h);
D.mark(D.face(h)) = true;
D.mark(h) = bool(circle);
Locator L(sphere_map()); L.init_marks_of_halfspheres();
}
template <class Forward_iterator>
Nef_polyhedron_S2(Forward_iterator first, Forward_iterator beyond,
Boundary b = INCLUDED) : Base(Nef_rep())
/*{\Mcreate creates a Nef polyhedron |\Mvar| from the set of sphere
segments in the iterator range |[first,beyond)|. If the set of sphere
segments is a simple polygon that separates the sphere surface
into two regions, then the polygonal region that is left of the
segment |*first| is selected. The polygonal region includes its
boundary if |b = INCLUDED| and excludes the boundary
otherwise. |Forward_iterator| has to be an iterator with value
type |Sphere_segment|.}*/
{ TRACEN("Nef_polyhedron_S2(): creation from segment range");
CGAL_nef_assertion(first!=beyond);
Overlayer D(sphere_map());
Sphere_segment s = *first;
D.create_from_segments(first,beyond);
Halfedge_iterator e;
CGAL_forall_halfedges(e,D) {
Sphere_circle c(D.circle(e));
if ( c == s.sphere_circle() ) break;
}
if ( e != Halfedge_iterator() ) {
if ( D.circle(e) != s.sphere_circle() ) e = D.twin(e);
CGAL_nef_assertion( D.circle(e) == s.sphere_circle() );
D.set_marks_in_face_cycle(e,bool(b));
if ( D.number_of_faces() > 2 ) D.mark(D.face(e)) = true;
else D.mark(D.face(e)) = !bool(b);
return;
}
D.simplify();
Locator L(sphere_map()); L.init_marks_of_halfspheres();
}
Nef_polyhedron_S2(const Nef_polyhedron_S2<K>& N1) : Base(N1) {}
Nef_polyhedron_S2& operator=(const Nef_polyhedron_S2<K>& N1)
{ Base::operator=(N1); return (*this); }
~Nef_polyhedron_S2() {}
template <class Forward_iterator>
Nef_polyhedron_S2(Forward_iterator first, Forward_iterator beyond,
double p) : Base(Nef_rep())
/*{\Xcreate creates a random Nef polyhedron from the arrangement of
the set of circles |S = set[first,beyond)|. The cells of the arrangement
are selected uniformly at random with probability $p$. \precond $0 < p
< 1$.}*/
{ CGAL_nef_assertion(0<=p && p<=1);
CGAL_nef_assertion(first!=beyond);
Overlayer D(sphere_map());
D.create_from_circles(first, beyond); D.simplify();
Vertex_iterator v; Halfedge_iterator e; Face_iterator f;
CGAL_forall_vertices(v,D)
D.mark(v) = ( default_random.get_double() < p ? true : false );
CGAL_forall_halfedges(e,D)
D.mark(e) = ( default_random.get_double() < p ? true : false );
CGAL_forall_faces(f,D)
D.mark(f) = ( default_random.get_double() < p ? true : false );
D.simplify();
Locator L(sphere_map()); L.init_marks_of_halfspheres();
}
protected:
Nef_polyhedron_S2(const Sphere_map& H, bool clone=true) : Base(Nef_rep())
/*{\Xcreate makes |\Mvar| a new object. If |clone==true| then the
underlying structure of |H| is copied into |\Mvar|.}*/
{ if (clone) ptr()->sm_ = H; }
void clone_rep() { *this = Nef_polyhedron_S2<K>(sphere_map()); }
/*{\Moperations 4 3 }*/
public:
void clear(Content plane = EMPTY)
{ *this = Nef_polyhedron_S2(plane); }
/*{\Mop makes |\Mvar| the empty set if |plane == EMPTY| and the
full plane if |plane == COMPLETE|.}*/
bool is_empty() const
/*{\Mop returns true if |\Mvar| is empty, false otherwise.}*/
{ Const_decorator D(sphere_map());
TRACEN("is_empty()"<<*this);
Face_const_iterator f = D.faces_begin();
return (D.number_of_vertices()==0 &&
D.number_of_edges()==0 &&
D.number_of_loops()==0 &&
D.number_of_faces()==1 &&
D.mark(f) == false);
}
bool is_plane() const
/*{\Mop returns true if |\Mvar| is the whole plane, false otherwise.}*/
{ Const_decorator D(sphere_map());
Face_const_iterator f = D.faces_begin();
return (D.number_of_vertices()==0 &&
D.number_of_edges()==0 &&
D.number_of_loops()==0 &&
D.number_of_faces()==1 &&
D.mark(f) == true);
}
void extract_complement()
{ TRACEN("extract complement");
if ( is_shared() ) clone_rep();
Overlayer D(sphere_map());
Vertex_iterator v;
Halfedge_iterator e;
Face_iterator f;
CGAL_forall_vertices(v,D) D.mark(v) = !D.mark(v);
CGAL_forall_edges(e,D) D.mark(e) = !D.mark(e);
CGAL_forall_faces(f,D) D.mark(f) = !D.mark(f);
if ( D.has_loop() )
D.mark(D.halfloop()) = !D.mark(D.halfloop());
D.mark_of_halfsphere(-1) = !D.mark_of_halfsphere(-1);
D.mark_of_halfsphere(+1) = !D.mark_of_halfsphere(+1);
}
void extract_interior()
{ TRACEN("extract interior");
if ( is_shared() ) clone_rep();
Overlayer D(sphere_map());
Vertex_iterator v;
Halfedge_iterator e;
CGAL_forall_vertices(v,D) D.mark(v) = false;
CGAL_forall_edges(e,D) D.mark(e) = false;
if ( D.has_loop() ) D.mark(D.halfloop()) = false;
D.simplify();
}
void extract_boundary()
{ TRACEN("extract boundary");
if ( is_shared() ) clone_rep();
Overlayer D(sphere_map());
Vertex_iterator v;
Halfedge_iterator e;
Face_iterator f;
CGAL_forall_vertices(v,D) D.mark(v) = true;
CGAL_forall_edges(e,D) D.mark(e) = true;
CGAL_forall_faces(f,D) D.mark(f) = false;
if ( D.has_loop() ) D.mark(D.halfloop()) = true;
D.mark_of_halfsphere(-1) = D.mark_of_halfsphere(+1) = false;
D.simplify();
}
void extract_closure()
/*{\Xop converts |\Mvar| to its closure. }*/
{ TRACEN("extract closure");
extract_complement();
extract_interior();
extract_complement();
}
void extract_regularization()
/*{\Xop converts |\Mvar| to its regularization. }*/
{ TRACEN("extract regularization");
extract_interior();
extract_closure();
}
/*{\Mtext \headerline{Constructive Operations}}*/
Nef_polyhedron_S2<K> complement() const
/*{\Mop returns the complement of |\Mvar| in the plane.}*/
{ Nef_polyhedron_S2<K> res = *this;
res.extract_complement();
return res;
}
Nef_polyhedron_S2<K> interior() const
/*{\Mop returns the interior of |\Mvar|.}*/
{ Nef_polyhedron_S2<K> res = *this;
res.extract_interior();
return res;
}
Nef_polyhedron_S2<K> closure() const
/*{\Mop returns the closure of |\Mvar|.}*/
{ Nef_polyhedron_S2<K> res = *this;
res.extract_closure();
return res;
}
Nef_polyhedron_S2<K> boundary() const
/*{\Mop returns the boundary of |\Mvar|.}*/
{ Nef_polyhedron_S2<K> res = *this;
res.extract_boundary();
return res;
}
Nef_polyhedron_S2<K> regularization() const
/*{\Mop returns the regularized polyhedron (closure of interior).}*/
{ Nef_polyhedron_S2<K> res = *this;
res.extract_regularization();
return res;
}
Nef_polyhedron_S2<K> intersection(const Nef_polyhedron_S2<K>& N1) const
/*{\Mop returns |\Mvar| $\cap$ |N1|. }*/
{ Nef_polyhedron_S2<K> res(sphere_map(),false); // empty
Overlayer D(res.sphere_map());
D.subdivide(sphere_map(),N1.sphere_map());
AND _and; D.select(_and); D.simplify();
return res;
}
Nef_polyhedron_S2<K> join(const Nef_polyhedron_S2<K>& N1) const
/*{\Mop returns |\Mvar| $\cup$ |N1|. }*/
{ Nef_polyhedron_S2<K> res(sphere_map(),false); // empty
Overlayer D(res.sphere_map());
D.subdivide(sphere_map(),N1.sphere_map());
OR _or; D.select(_or); D.simplify();
return res;
}
Nef_polyhedron_S2<K> difference(const Nef_polyhedron_S2<K>& N1) const
/*{\Mop returns |\Mvar| $-$ |N1|. }*/
{ Nef_polyhedron_S2<K> res(sphere_map(),false); // empty
Overlayer D(res.sphere_map());
D.subdivide(sphere_map(),N1.sphere_map());
DIFF _diff; D.select(_diff); D.simplify();
return res;
}
Nef_polyhedron_S2<K> symmetric_difference(
const Nef_polyhedron_S2<K>& N1) const
/*{\Mop returns the symmectric difference |\Mvar - T| $\cup$
|T - \Mvar|. }*/
{ Nef_polyhedron_S2<K> res(sphere_map(),false); // empty
Overlayer D(res.sphere_map());
D.subdivide(sphere_map(),N1.sphere_map());
XOR _xor; D.select(_xor); D.simplify();
return res;
}
/*{\Mtext Additionally there are operators |*,+,-,^,!| which
implement the binary operations \emph{intersection}, \emph{union},
\emph{difference}, \emph{symmetric difference}, and the unary
operation \emph{complement} respectively. There are also the
corresponding modification operations |*=,+=,-=,^=|.}*/
Nef_polyhedron_S2<K> operator*(const Nef_polyhedron_S2<K>& N1) const
{ return intersection(N1); }
Nef_polyhedron_S2<K> operator+(const Nef_polyhedron_S2<K>& N1) const
{ return join(N1); }
Nef_polyhedron_S2<K> operator-(const Nef_polyhedron_S2<K>& N1) const
{ return difference(N1); }
Nef_polyhedron_S2<K> operator^(const Nef_polyhedron_S2<K>& N1) const
{ return symmetric_difference(N1); }
Nef_polyhedron_S2<K> operator!() const
{ return complement(); }
Nef_polyhedron_S2<K>& operator*=(const Nef_polyhedron_S2<K>& N1)
{ this = intersection(N1); return *this; }
Nef_polyhedron_S2<K>& operator+=(const Nef_polyhedron_S2<K>& N1)
{ this = join(N1); return *this; }
Nef_polyhedron_S2<K>& operator-=(const Nef_polyhedron_S2<K>& N1)
{ this = difference(N1); return *this; }
Nef_polyhedron_S2<K>& operator^=(const Nef_polyhedron_S2<K>& N1)
{ this = symmetric_difference(N1); return *this; }
/*{\Mtext There are also comparison operations like |<,<=,>,>=,==,!=|
which implement the relations subset, subset or equal, superset, superset
or equal, equality, inequality, respectively.}*/
bool operator==(const Nef_polyhedron_S2<K>& N1) const
{ return symmetric_difference(N1).is_empty(); }
bool operator!=(const Nef_polyhedron_S2<K>& N1) const
{ return !operator==(N1); }
bool operator<=(const Nef_polyhedron_S2<K>& N1) const
{ return difference(N1).is_empty(); }
bool operator<(const Nef_polyhedron_S2<K>& N1) const
{ return difference(N1).is_empty() && !N1.difference(*this).is_empty(); }
bool operator>=(const Nef_polyhedron_S2<K>& N1) const
{ return N1.difference(*this).is_empty(); }
bool operator>(const Nef_polyhedron_S2<K>& N1) const
{ return N1.difference(*this).is_empty() && !difference(N1).is_empty(); }
/*{\Mtext \headerline{Exploration - Point location - Ray shooting}
As Nef polyhedra are the result of forming complements
and intersections starting from a set |H| of half-spaces that are
defined by oriented lines in the plane, they can be represented by
an attributed plane map $M = (V,E,F)$. For topological queries
within |M| the following types and operations allow exploration
access to this structure.}*/
/*{\Mtypes 3}*/
typedef Const_decorator Topological_explorer;
//typedef CGAL::SM_explorer<Const_decorator,T> Explorer;
typedef Const_decorator Explorer;
/*{\Mtypemember a decorator to examine the underlying plane map.
See the manual page of |Explorer|.}*/
typedef typename Locator::Object_handle Object_handle;
/*{\Mtypemember a generic handle to an object of the underlying
plane map. The kind of object |(vertex, halfedge, face)| can
be determined and the object can be assigned to a corresponding
handle by the three functions:\\
|bool assign(Vertex_const_handle& h, Object_handle)|\\
|bool assign(Halfedge_const_handle& h, Object_handle)|\\
|bool assign(Face_const_handle& h, Object_handle)|\\
where each function returns |true| iff the assignment to
|h| was done.}*/
/*{\Moperations 3 1 }*/
bool contains(Object_handle h) const
/*{\Mop returns true iff the object |h| is contained in the set
represented by |\Mvar|.}*/
{ Locator PL(sphere_map()); return PL.mark(h); }
bool contained_in_boundary(Object_handle h) const
/*{\Mop returns true iff the object |h| is contained in the $1$-skeleton
of |\Mvar|.}*/
{ Vertex_const_handle v;
Halfedge_const_handle e;
return ( CGAL::assign(v,h) || CGAL::assign(e,h) );
}
Object_handle locate(const Sphere_point& p) const
/*{\Mop returns a generic handle |h| to an object (face, halfedge, vertex)
of the underlying plane map that contains the point |p| in its relative
interior. The point |p| is contained in the set represented by |\Mvar| if
|\Mvar.contains(h)| is true. The location mode flag |m| allows one to choose
between different point location strategies.}*/
{
Locator PL(sphere_map());
return PL.locate(p);
}
struct INSET {
const Const_decorator& D;
INSET(const Const_decorator& Di) : D(Di) {}
bool operator()(Vertex_const_handle v) const { return D.mark(v); }
bool operator()(Halfedge_const_handle e) const { return D.mark(e); }
bool operator()(Halfloop_const_handle l) const { return D.mark(l); }
bool operator()(Face_const_handle f) const { return D.mark(f); }
};
Object_handle ray_shoot(const Sphere_point& p,
const Sphere_direction& d) const
/*{\Mop returns a handle |h| with |\Mvar.contains(h)| that can be
converted to a |Vertex_/Halfedge_/Face_const_handle| as described
above. The object returned is intersected by the ray starting in |p|
with direction |d| and has minimal distance to |p|. The operation
returns the null handle |NULL| if the ray shoot along |d| does not hit
any object |h| of |\Mvar| with |\Mvar.contains(h)|.}*/
{
Locator PL(sphere_map());
return PL.ray_shoot(p,d,INSET(PL));
}
struct INSKEL {
bool operator()(Vertex_const_handle) const { return true; }
bool operator()(Halfedge_const_handle) const { return true; }
bool operator()(Halfloop_const_handle) const { return true; }
bool operator()(Face_const_handle) const { return false; }
};
Object_handle ray_shoot_to_boundary(const Sphere_point& p,
const Sphere_direction& d) const
/*{\Mop returns a handle |h| that can be converted to a
|Vertex_/Halfedge_const_handle| as described above. The object
returned is part of the $1$-skeleton of |\Mvar|, intersected by the
ray starting in |p| with direction |d| and has minimal distance to
|p|. The operation returns the null handle |NULL| if the ray shoot
along |d| does not hit any $1$-skeleton object |h| of |\Mvar|. The
location mode flag |m| allows one to choose between different point
location strategies.}*/
{
Locator PL(sphere_map());
return PL.ray_shoot(p,d,INSKEL());
}
Explorer explorer() const
/*{\Mop returns a decorator object which allows read-only access of
the underlying plane map. See the manual page |Explorer| for its
usage.}*/
{ return Explorer(const_cast<Sphere_map&>(sphere_map())); }
/*{\Mtext\headerline{Input and Output}
A Nef polyhedron |\Mvar| can be visualized in an open GL window. The
output operator is defined in the file
|CGAL/IO/Nef_\-poly\-hedron_2_\-Win\-dow_\-stream.h|.
}*/
/*{\Mimplementation Nef polyhedra are implemented on top of a halfedge
data structure and use linear space in the number of vertices, edges
and facets. Operations like |empty| take constant time. The
operations |clear|, |complement|, |interior|, |closure|, |boundary|,
|regularization|, input and output take linear time. All binary set
operations and comparison operations take time $O(n \log n)$ where $n$
is the size of the output plus the size of the input.
The point location and ray shooting operations are implemented in
the naive way. The operations run in linear query time without
any preprocessing.}*/
/*{\Mexample Nef polyhedra are parameterized by a standard CGAL
kernel.
\begin{Mverb}
#include <CGAL/Homogeneous.h>
#include <CGAL/leda_integer.h>
#include <CGAL/Nef_polyhedron_S2.h>
using namespace CGAL;
typedef Homogeneous<leda_integer> Kernel;
typedef Nef_polyhedron_S2<Kernel> Nef_polyhedron;
typedef Nef_polyhedron::Sphere_circle Sphere_circle;
int main()
{
Nef_polyhedron N1(Sphere_circle(1,0,0));
Nef_polyhedron N2(Sphere_circle(0,1,0), Nef_polyhedron::EXCLUDED);
Nef_polyhedron N3 = N1 * N2; // line (*)
return 0;
}
\end{Mverb}
After line (*) |N3| is the intersection of |N1| and |N2|.}*/
}; // end of Nef_polyhedron_S2
template <typename K>
std::ostream& operator<<
(std::ostream& os, const Nef_polyhedron_S2<K>& NP)
{
os << "Nef_polyhedron_S2\n";
typedef typename Nef_polyhedron_S2<K>::Decorator Decorator;
typedef typename Nef_polyhedron_S2<K>::Sphere_map Sphere_map;
CGAL::SM_io_parser<Decorator> O(os,
const_cast<Sphere_map&>(NP.sphere_map()));
O.print();
return os;
}
template <typename K>
std::istream& operator>>
(std::istream& is, Nef_polyhedron_S2<K>& NP)
{
typedef typename Nef_polyhedron_S2<K>::Decorator Decorator;
CGAL::SM_io_parser<Decorator> I(is, NP.sphere_map());
if ( I.check_sep("Nef_polyhedron_S2") ) I.read();
else {
std::cerr << "Nef_polyhedron_S2 input corrupted." << std::endl;
NP = Nef_polyhedron_S2<K>();
}
typename Nef_polyhedron_S2<K>::Topological_explorer D(NP.explorer());
D.check_integrity_and_topological_planarity();
return is;
}
CGAL_END_NAMESPACE
#endif //CGAL_NEF_POLYHEDRON_S2_H